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Abstract

The vast majority of the world’s languages are unable to follow in the foot-
steps of existing resource-intensive pathways to building text-to-speech (TTS)
systems. But, as the quality of contemporary speech synthesis grows, so too
does the interest from many of these underserved language communities in
adopting TTS for a variety of real-world applications. The goal of this paper
is to provide signposts and points of reference for future low-resource speech
synthesis efforts, with insights drawn from the Speech Generation for Indige-
nous Language Education (SGILE) project. Funded and coordinated by the
National Research Council of Canada (NRC), this multi-year, multi-partner
project has the goal of producing high-quality text-to-speech systems that
support the teaching of Indigenous languages in a variety of educational con-
texts. We provide background information and motivation for the project,
as well as details about our approach and project structure, including re-
sults from a multi-day requirements-gathering session. We discuss some of
our key challenges, including building models with appropriate controls for
educators, improving model data efficiency, and strategies for low-resource
transfer learning and evaluation. Finally, we provide a detailed survey of
existing speech synthesis software and introduce EveryVoice TTS, a toolkit
designed specifically for low-resource speech synthesis.
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1. Introduction

There are approximately 70 Indigenous languages spoken in Canada from
10 distinct language families. As a consequence of the residential school sys-
tem and other policies of cultural suppression, the majority of these lan-
guages now have fewer than 500 fluent speakers remaining, most of them
elderly. Despite this, Indigenous people have resisted colonial policies and
continued speaking their languages, with interest from students and parents
in Indigenous language education continuing to grow. Teachers are often
overwhelmed by the number of students, and the trend towards online edu-
cation means many students who have not previously had access to language
classes now do. Supporting these growing cohorts of students comes with
unique challenges in languages with few fluent first-language speakers, and
teachers are particularly concerned with providing their students with oppor-
tunities to hear the language outside of class. While there is no replacement
for a speaker of an Indigenous language, there are possible applications for
speech synthesis (text-to-speech) to supplement existing text-based tools like
verb conjugators, dictionaries, and phrasebooks. To this end, the National
Research Council of Canada (NRC) has partnered with the Onkwawenna
Kentyohkwa Kanyen’kéha immersion school, W

¯
SÁNEĆ School Board, Uni-

versity nuhelot’įne thaiyots’į nistameyimâkanak Blue Quills, the National
Institute of Informatics in Japan (NII), and the University of Edinburgh
(UoE) to research and develop state-of-the-art text-to-speech (TTS) systems
and techniques for Indigenous languages in Canada.

1.1. Research Significance
There are two main intended impacts for this paper. First, we provide

details and reflections on the practical, methodological, and technical chal-
lenges related to conducting speech synthesis research for extremely low-
resource languages in educational contexts. Second, we present a Python
library designed to address some of these challenges, named the EveryVoice
TTS Toolkit.

We introduce EveryVoice TTS by comparing it to existing neural speech
synthesis toolkits with a focus on how well each toolkit supports our use case
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(§5). Specifically, the low-resource language communities we are concerned
with may have very few fluent speakers, often elderly people with many other
pressing responsibilities and limited time to spend recording audio. Data ef-
ficiency – techniques for creating TTS systems that generate high-quality
speech even if they’ve only been trained on a small amount of speech – is a
very minor consideration when one is dealing with high-resource languages.
In our context, however, it is crucial. We have designed EveryVoice TTS to
be easily adapted to new languages and new datasets, with specific consid-
erations for making the development process more user-friendly for technical
users without specific expertise in TTS research.

While some of the discussion in this paper is specific to certain edu-
cational contexts, the goal of applying TTS models to augment text-based
educational tools is a general one and aspects of our approach will be relevant
to a wider audience. Specifically, we believe many of the challenges and pro-
posed solutions discussed in this paper will be relevant to other ‘low-resource
language’ contexts since many of the technical issues faced when developing
speech synthesis systems for Indigenous languages can be coarsely general-
ized as problems related to the ‘low-resource’ nature of the languages: limited
speakers means limited data, limited eligible participants for evaluation, and
limited prior work.

1.2. A Roadmap for Readers
Since this paper focuses on making TTS more accessible to deploy in new

domains, it speaks to multiple audiences: from one direction, TTS experts
who may be unfamiliar with the challenges of developing Indigenous language
technologies, and from other directions, developers or managers working for
Indigenous language organizations who may be unfamiliar with the challenges
and potential perils of TTS.

In consequence, the paper is quite long, and we provide the following
roadmap to help guide readers with different perspectives and priorities.

Speech Synthesis Researchers. For speech synthesis researchers, we rec-
ommend starting with §2 for a description of the motivation that community
organizations have in developing TTS systems as well as an example of the
linguistic variation that exists among the Indigenous languages in our project.
Proceed to §2.3 for a brief description of prior work in TTS for Indigenous
languages in Canada and a cautionary note against carrying out research in
Indigenous language TTS without engaging with the language community.
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Finally, §4 details four of the main challenges to low-resource TTS in an edu-
cational context. We hope that the description of these challenges encourages
future research in these areas.

Technologists and Developers. Developers and technologists interested
in applying TTS to a new language or use case need to be aware of possi-
ble ethical issues. Thus, we recommend starting with §2.3 and the ‘Imagine
somebody misusing TTS technology ’ paragraph in §Appendix A, which give
a cautionary overview to the ways that TTS technology could be misused.
Then, if you are involved in gathering/recording data, we recommend you
proceed to read §3.2 and §3.3; otherwise, you can skip them. Finally, we
recommend reading §5 for a description of EveryVoice TTS as well as Ap-
pendix B for a comparison with other toolkits.

Program Managers. For program managers, administrators, or other
non-technical readers interested in starting or designing a project related
to speech synthesis, we recommend reading the introduction to §2 for back-
ground context and information about ethical engagement. We then recom-
mend reading §3 and §3.1 which discuss our methods and approach to project
organization and defining project goals. The rest of §3 may be of interest if
you are involved in data collection aspects of the project, and §3.3.3 may be
of particular interest when estimating a budget for recordings. Finally, §6
itemizes key take-aways from the paper.

2. Motivation, Ethical Engagement, and Context

The language revitalization efforts taking place today within Indigenous
language communities in Canada are in response to over a century of colo-
nial language policy aimed at devitalizing Indigenous languages. Accord-
ingly, the decision to speak an Indigenous language in Canada is often seen
as a political act; one that asserts broader goals of self-determination and
community building (Brinklow et al., 2019; Pine & Turin, 2017). However,
instead of affirming these goals, many academic and industry-led projects
undermine them by compromising community data sovereignty and by cre-
ating inequitable collaborations primarily focused on alienating Indigenous
communities from their data (Junker, 2024). Put another way, while previ-
ous colonial efforts in Canada oppressed Indigenous language communities
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as a means of alienating them from their land and natural resources, contem-
porary colonial efforts often disingenuously support Indigenous languages as
a means of obtaining their data. While the solution to many so-called ‘low-
resource’ problems in natural language processing (NLP) are approached
solely by obtaining more data, there is a growing chorus of voices within the
NLP community that identify more structural and systemic problems with
current approaches to collaborations between NLP researchers and Indige-
nous communities (Bird, 2020, 2022; Brinklow et al., 2019; Schwartz, 2022).
Researchers must make ethical engagement with communities their top pri-
ority. Thus, we believe it is important to describe who the partners in this
collaboration are, how our collaboration came to be, and how it has evolved.

2.1. Project Motivation and Indigenous Partners
The original motivation for pursuing TTS research came from open-

response feedback held during a user evaluation study of the Kawennón:nis
verb conjugator educational software project in 2018 (Kazantseva et al.,
2018). In these user evaluation sessions, held in person at the Onkwawenna
Kentyohkwa Kanyen’kéha immersion school, participants repeatedly expressed
a desire to be able to hear the conjugations produced by the tool. However,
the domain of the generative text model underlying Kawennón:nis (at that
time 120 000+ unique forms) was simply too large to be feasibly recorded.
This question of finding the most efficient means to supplement a text-based
tool like Kawennón:nis with audio is what catalyzed this research effort.

In 2021, members from the National Research Council of Canada co-
designed a project called Speech Generation for Indigenous Language Educa-
tion (SGILE) in an application to the National Research Council of Canada’s
Small Teams funding initiative, which supports NRC researchers in partner-
ship with external organizations. The project proposal was co-designed with
collaborators from organizations with significant expertise in either speech
synthesis or Indigenous language education: the University of Edinburgh and
National Institute of Informatics in Japan (NII, unfunded partner), the previ-
ously mentioned Onkwawenna Kentyohkwa Kanyen’kéha immersion school,
(§2.1.1), the W

¯
SÁNEĆ School Board (§2.1.2), and University nuhelot’įne

thaiyots’į nistameyimâkanak Blue Quills (§2.1.3). The project obtained fund-
ing in 2022 and will run until 2025. The three Indigenous partners represent
three unrelated language families and communities, with different phonologi-
cal properties and educational programs. We include Fig. 1, which visualizes
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the overlap of phoneme1 inventories for each language, to illustrate the ex-
tent of the phonological differences between these languages and to dispel the
common assumption that most Indigenous languages in Canada are similar
to one another.
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Figure 1: Phone modelling inventory overlap between Kanyen’kéha (moh, §2.1.1),
SENĆOTEN (str, §2.1.2), and nêhiyawêwin (crk, §2.1.3)

2.1.1. Onkwawenna Kentyohkwa Kanyen’kéha Immersion School
Onkwawenna Kentyohkwa (Our Language Society) is a community-based

organization that teaches Kanyen’kéha (the ‘Mohawk’ language) to adults on
the Six Nations Grand River Territory near Brantford, Ontario. It is one of
the longest-running adult immersion program for any Indigenous language in

1Phonemes are the minimal phonological units capable of producing contrasts between
words.
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the country and bases its curriculum around the ‘root word method’ (Green
& Maracle, 2018).

Kanyen’kéha is an Iroquoian language spoken in Quebec, Ontario, and
New York State. The language is highly polysynthetic, with long words often
translating to entire sentences as seen below from Kazantseva et al. (2018).

(1) tetsyonkyathahahkwahnónhne
te-ts-yonky-at-hahahkw-hnón-hne
dual-rep-3sg.n/1.du.incl-srefl-walk-purp-ppfv

‘the two of us went for a walk again’

The phoneme inventory for Kanyen’kéha (moh) has 12 consonants and 24
vowels, including 6 lengthened vowels, four nasalized vowels, and the high-
and low-tone variants of each vowel.

2.1.2. W
¯

SÁNEĆ School Board
The W

¯
SÁNEĆ School Board operates a variety of accredited immersion

programs for the SENĆOTEN language, spoken by the W
¯

SÁNEĆ people
on the island colonially known as Vancouver Island off the coast of British
Columbia. It provides world-renowned programming to preschool, kinder-
garten, primary school, and adult education for learners. The community
has a long history of language activism, with the language’s orthography
being developed by the late Dave Elliott in 1978 (W

¯
SÁNEĆ School Board,

2023).
The SENĆOTEN language has a large inventory of consonant phonemes,

with 36 consonants compared to 7 vowels (including two diphthongs). Words
often contain complex consonant clusters as in the examples below from
Montler (2018):

(2) XDQETEN
¯

Xt’kw’@́t@N
T
¯

Á .̧
>
tì’éP

‘It was carved again.’

(3) ST
¯

LT
¯

PÁLK
¯

EN.
s
>
tì’l

>
tì’pelq@n

‘little feathers’

2.1.3. University nuhelot’įne thaiyots’į nistameyimâkanak Blue Quills (UnBQ)
UnBQ was the first university in Canada to be First Nations owned and

operated. The university is jointly owned by seven First Nation band gov-
ernments. Its mission is to “address the spiritual, emotional, physical and
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mental needs of the seven member First Nations through the delivery of
quality education programs” (UnBQ, 2023).

The university is located in Northern Alberta in Treaty 6 territory. It is
located in the same building as a former residential school where, in 1970, par-
ents and some Indigenous staff members of the school protested and hosted a
sit-in at the school to oppose plans to have the school amalgamated into the
public school system. Following weeks of protest, the school was transferred
to the Native Education Council and is now an accredited Indigenous-run
university, specializing in programs in Social Work, Early Childhood Develop-
ment, Community Environmental Technology, nêhiyawêwin and Denesųłįné
languages, and other post-secondary programming with an Indigenous focus.

The nêhiyawêwin language (also known as Plains or Y-dialect Cree) is an
Algonquian language spoken in Saskatchewan, Alberta, Manitoba, and Mon-
tana. Its phoneme inventory is relatively small, comprising 10 consonants
and 7 vowels. The language has both an alphabetic and syllabary-based
standard orthography.

2.2. Funding that supports equitable cross-institutional collaboration
Our project is intentionally titled Speech Generation for Indigenous Lan-

guage Education. The goal is not to develop speech synthesis systems inde-
pendently of their use case; rather, it is to develop speech synthesis systems
which braid into existing community goals and workflows. Given the sordid
history of research within Indigenous communities (Medin & Bang, 2014;
Mosby, 2013; Smith, 2023) as well as the contemporary prevalence of data
extraction and exploitation in Indigenous communities (Junker, 2024), there
is little appetite for research projects which do not align with community
goals (Kuhn et al., 2020; Le Ferrand et al., 2022).

Part of the way our project ensures alignment with community goals is
structural. Often, research grants are only available to academic organiza-
tions, which in turn provide funds to Indigenous community organizations
and peoples as ‘participants’. There is a large body of work across academic
disciplines that discusses ethical research collaborations (Bird, 2022; Brin-
klow, 2021; Czaykowska-Higgins, 2009; Hermes & Engman, 2017; Schwartz,
2022; Smith, 2023) and challenges research that is structured to valorise the
expertise of academic researchers while excluding, ignoring, and devaluing
the expertise of Indigenous peoples.

The focus of the NRC Ideation Fund’s ‘Small Teams Initiative’, which
funded our project, is to connect NRC teams with external collaborators
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who possess complementary capabilities and expertise. Crucially for our
project, the fund does not restrict qualifying organizations to universities
or research organizations. This allowed our project to be co-developed with
Indigenous organizations with expertise in language education from the out-
set and resulted in each of the partners being funded independently by the
NRC’s National Program Office. Each collaborator defined their own set of
goals in the application and is in control of their own budget, finances, hiring,
deliverables, and work practices for the duration of the project.

While the funding structure described here is not a comprehensive solu-
tion to the enduring impacts of colonization that continue to affect research
collaborations between settler and Indigenous peoples, it is an important step
in creating an equitable environment for research collaborations.

2.3. Ethical Issues of TTS Research without Community Engagement
There is little prior work on speech synthesis for the languages described,

and indeed for many Indigenous languages. Statistical parametric speech
synthesizers exist for nêhiyawêwin (Harrigan et al., 2019) and Kanyen’kéha
(Saunders, 2008). Preliminary neural systems have also been developed
for Kanyen’kéha and SENĆOTEN (Pine, Wells, et al., 2022). Neural sys-
tems have also been created for languages in the same language families
as nêhiyawêwin (Algonquian), and Kanyen’kéha (Iroquoian) (Conrad, 2020;
Hammerly et al., 2023; Pratap et al., 2024).

Most of the existing efforts have been done on a small scale by projects
that, appropriately, engage with the language communities in question (Ham-
merly et al., 2023; Pine, Wells, et al., 2022). By contrast, Pratap et al. (2024)
describes work on Meta’s ‘Massively Multilingual Speech’ project, which pro-
vides TTS models for over 1 100 languages. In that work, data is collected
from Bible translation resources, but the authors do not state whether they
had permission from the publishers to use the data for this purpose. It is
also unstated whether the authors were able to obtain permission from each
of the speakers to train systems to model their likeness. In subsequent per-
sonal communication with the authors2, it was reported that they indeed did
not consult with the communities or speakers in question due to the scale
of the project, and are under the belief that because the data was obtained
from public sources, it can be used for non-commercial purposes (despite the

2Personal communication to Roland Kuhn, August 4 2023.
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terms which appear to disallow it (Faith Comes By Hearing, 2021)). With
the collected data, the authors train separate VITS (Kim et al., 2021) mod-
els for each language, and release the checkpoints after 100 000 steps. The
released models were evaluated using a combination of automatic metrics
(Mel-Cepstral Distortion and Word Error Rates from ASR systems) and lis-
tening tests, although the listening tests did ‘not require raters to be able to
speak the respective language’ (Pratap et al., 2024, p. 31).

Releasing weakly evaluated models trained on data obtained without the
explicit permission of the publisher or speakers poses a variety of potential
harms that were not discussed by Pratap et al. (2024), such as the gener-
ation of offensive content, embarrassment due to pronunciation errors, and
unauthorized use of someone’s likeness possibly after that person has passed
away. Beyond these potential harms, research conducted with unclear data
permissions has negative effects on reproducibility. As an example in the
parallel case of research on face recognition, many of the datasets originally
assembled have become inaccessible due to legal and ethical concerns, as well
as a lack of individual consent from data subjects (Boutros et al., 2023).

The ethical issues related to possible misuse of TTS technology elicited
animated discussion during the brainstorming part of the kickoff meeting for
the project (§Appendix A). We believe that future efforts for TTS for Indige-
nous languages should engage meaningfully with the language communities
in question, and follow established guidelines surrounding ownership of data
(Schnarch, 2004). Approaches to mitigating risks related to data misuse and
maintaining data sovereignty are also discussed in Appendix C.1.2.

2.4. Repeatability
With over 70 Indigenous languages spoken in Canada, our hope is that

text-to-speech technology could become available to any community that
wants it. Throughout the project we have tried to create a repeatable recipe
for others to follow. This is partially accounted for through the diverse group
of collaborators, which helps ensure our project outcomes do not ‘overfit’ to
any one particular language or educational context, while providing room for
adaptation to community-specific goals. Not only are the three languages
involved in this project from three separate language families and highly dis-
similar phonologically and orthographically, the educational contexts where
these languages are taught are also quite different, ranging from early child-
hood education, to university education, and adult immersion. We hope that
this diversity leads to more reproducible and widely applicable outcomes.
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However, we caution the reader in assuming that just because a lan-
guage they are working with can be described as ‘low-resource’, that our
findings will be directly relevant. Categorizing languages based on whether
or not data-driven probabilistic algorithms can be applied to them is a coarse
method that, while convenient and frequently seen in literature, does not ac-
count for other important factors such as community population, literacy
rates, community language goals, and domains of language use. The reduc-
tive nature of the term also promotes a simplistic view of both the problem
and solution for the languages it describes; a view which takes for granted
the benefits of technology and ‘problematises complex socio-political situa-
tions purely in terms of missing data’ (Bird, 2022, pg. 7818). Despite its
technical convenience in describing a set of languages for which certain al-
gorithms could be applied, using the term in a decontextualized way risks
disenfranchising language communities (Bird, 2020, 2022; Brinklow, 2021).
Accordingly, we caution the reader not to assume that our motivations, meth-
ods, or findings extend to other language communities directly. We therefore
encourage the reader to follow our repeatable recipe with a grain of salt, and
to expect to make necessary adaptations to the recipe to suit their context.

3. Methodology & Project Structure

To ensure continued alignment between partners throughout the project,
we have created a project structure which enables them to continue to co-
develop and maintain a shared, cohesive vision of the desired outcomes.

The day-to-day operations of the project are split into three main streams
of work (Figure 2). The first is the ‘text stream’ (§3.2). The activities of
this stream vary between collaborators, from verifying existing text resources
such as dictionaries or descriptive grammars (Montler, 2018), to developing
generative text tools such as verb conjugators that will serve as the domains
for synthesis. The second, the ‘recording stream’ (§3.3), is responsible for op-
erating recording equipment, performing the recordings, and ensuring quality
in the recording process. Lastly, the ‘modelling stream’ is tasked with build-
ing the speech synthesis models to address the challenges in §4. From time
to time, the TTS system for a particular language will be evaluated by the
relevant collaborators, often motivating improvements to the system. This
section describes the text stream and the recording stream. The modelling
stream and evaluation pose unique challenges, discussed in detail in §4. In
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practice, given the relatively small size of the team, individual members of-
ten belong to multiple streams, but we have found the division helpful for
determining goals and meeting structures.

3.1. Defining objectives and a shared vision
To formally begin the project, we held a kick-off meeting on 22–25 August

2022 on the traditional territory of the W
¯

SÁNEĆ people (§2.1.2). Each of

Text
Stream

Recording
Stream

Modelling
Stream

"EveryVoice"
Toolkit

Community
Recording
Requests

"Gramble" "Common Voice"

Existing text

Evaluation

"WordWeaver",
"WordWeaverLite",

& Dictionary

Text
prompts

Recordings

Parallel
Text/Audio

Data

Community-owned
TTS model

Synthesized
SpeechFail

Pass

Generated Text

Figure 2: Flow chart depicting work flow of the SGILE project across the three streams:
text (§3.2), recording (§3.3), and modelling (§4). Existing text is used as prompts for
recordings and also as reference material for creating grammar models (via programming
language ‘Gramble’, §3.2.2). The text stream is responsible for uploading prompts (either
generated from ‘Gramble’ or cleaned from existing text) to CommonVoice (§3.3.2). Text
that is uploaded to CommonVoice serves as prompts for the recording stream. Recordings
created in CommonVoice by the recording stream are retrieved by the modelling stream
to create a TTS model (via the ‘EveryVoice’ toolkit, §5.2 & B.7). The model is then
evaluated and, following positive assessment, is incorporated into the target educational
application (§3.2.1). If the model does not pass evaluation, the errors are analyzed and
another iteration of text processing, recording, and modelling begins.
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the organizations participating in the project had one or more representatives
who came from around the world to meet in person and build relationships
and skills. In addition to several workshops on recording techniques and
grammar modelling, we held a brainstorming session over two days to elicit
design ideas and discuss key themes, concerns, and expectations.

To facilitate the brainstorming session, collaborators were grouped with
others from outside their institutions to discuss and answer each of three
questions. All collaborators in attendance hold teaching or administrative
positions at their organizations. These discussions were facilitated by NRC
staff. We intend to collect similar information from students of the stake-
holder institutions and beginner learners of the stakeholder languages further
on in the project, through participant-based studies.

Collaborators who were focused primarily on technical aspects of speech
synthesis modelling were instructed not to comment on whether a particular
idea was technically feasible or not. This unrestricted brainstorming allowed
the conversation to focus on goals and concerns, shifting feasibility to a later
stage of discussion.

The brainstorming sessions were conducted with the following prompts:
Imagine a tool that can speak your language:

• What does it sound like?

• Where are the people using the tool? What are they doing with it?

• Imagine somebody misusing the technology, what are some things that
could go wrong?

After the questions had been discussed, the recorded ideas were analyzed
by NRC staff later in the day to find underlying themes. These results
were then reviewed by the collaborators in attendance to ensure accurate
interpretations of the discussions. Summaries of these findings are found in
Appendix A.

Later in the kick-off meeting, the basic structure of the neural speech
synthesis model was sketched out during meetings between attendees repre-
senting NRC, UoE, and NII. Certain technical challenges were identified, as
discussed in detail in §4.

3.2. Text Data Collection & Generation
One of the main challenges for text-to-speech systems is supporting general-

purpose synthesis, i.e., creating models where the eventual domain of synthe-
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sis is not known in advance. However, due to the possible opportunities for
misuse envisioned during the kick-off meeting, there was not a strong desire
from collaborators to build a general-purpose interface capable of synthesiz-
ing arbitrary text. Instead, the primary application for our speech synthesis
models will be to supplement text-based tools such as dictionaries and verb
conjugators with audio.

Defining the text domain in advance is helpful because it enables us to bet-
ter mitigate issues of domain mismatch between the data we create and the
speech we intend to synthesize. For example, many Indigenous-language text
corpora consist mostly of narrative monologues (histories, legends, etc.) and
biblical translations, which have a bias towards particular persons, moods,
tenses, and so on (e.g. third person indicative past). By specifying the do-
main for synthesis in advance, we can mitigate some of these challenges, focus
our recording efforts, and create task-specific test sets.

3.2.1. Existing Text Resources
As mentioned in the introduction, the initial idea for augmenting text-

based educational applications with TTS came from user studies of an online
verb conjugator called Kawennón:nis (lit. ‘the Wordmaker’ in Kanyen’kéha)
(Kazantseva et al., 2018). Kawennón:nis is a collaborative effort between the
NRC and educators from two separate Kanyen’kéha communities: Ohswéken
and Kahnawà:ke. The original idea for Kawennón:nis came from Owen-
natekha Brian Maracle, a collaborator on our current project and an experi-
enced teacher at Onkwawenna Kentyohkwa in Ohswéken in 2016 who wanted
to create software for modelling verbal paradigms in Kanyen’kéha, which are
very complex and are crucial to becoming proficient in the language.

The interface for Kawennón:nis was built using open-source software
called WordWeaver which is a language-agnostic application for visualizing
and interacting with inflectional verb paradigms. The underlying language
models for the Ohswéken and Kahnawà:ke versions contain approximately
120 000 and two million conjugations respectively.

While the SENĆOTEN community does not have a version of Word-
Weaver for their language, they do have existing text resources that could
be supplemented with audio. The SENĆOTEN dictionary (Montler, 2018)
and grammar are rich resources replete with tens of thousands of words and
example sentences. Instead of recording each of these words and sentences
individually, the goal of ‘breathing life into the dictionary and grammar’
through supplemental synthesized audio was immediately proposed by the
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W
¯

SÁNEĆ collaborators.

3.2.2. Text-based grammar modelling
The W

¯
SÁNEĆ School Board and University nuhelot’įne thaiyots’į nista-

meyimâkanak Blue Quills do not have an existing generative text tool like
Kawennón:nis, but are interested in developing such tools. To this end, we
are building new grammar models of important categories and the deriva-
tions/inflections that teachers identify as educationally important. This en-
sures that our TTS systems will have relevant text to generate speech from.
It also allows us to generate text outside the training data for evaluation.

To accomplish this goal, and to improve collaboration between language
experts and developers, we have been building an intuitive, layperson-readable
programming system, named Gramble (Littell et al., 2024). Gramble sits
roughly in the same niche as finite-state based generation tools, such as
Xerox Finite-State Tool (XFST) (Beesley & Karttunen, 2003).3 It uses
a spreadsheet-like interface (Fig. 3) that, when used in conjunction with
cloud-based spreadsheet software like Google Sheets, enables live, online pair-
programming, so that linguist-programmers and teachers can more directly
work together in modelling their languages. Working in this way has greatly
reduced our turnaround time in building new paradigm generators.

Grammar modelling is done in close collaboration with teachers from our
partnered organizations, with aid from existing text-based language resources
(e.g., dictionaries, grammars) created or approved by them. (Y. Lu et al.,
2024) describes a collaboration of this kind involving Gramble and an In-
digenous language community not discussed in the current paper: speakers
of Oneida (an Iroquoian language closely related to Kanyen’kéha).

3.2.3. Grapheme-to-Phoneme (G2P) Conversion
A challenge for many TTS systems is being able to derive a pronunci-

ation form from the language’s orthography. Many of the world’s writing
systems contain insufficient information for deriving a corresponding pro-
nunciation form, either due to their nature (e.g. logographic systems), or
because pronunciations have diverged significantly from their spellings over

3Despite recent advances in neural language models, they are not able to reliably gener-
ate forms they have never seen. In practice, very-low-resource natural language generation
is likely to remain handwritten and rule-based. We want to ensure that students are learn-
ing actual forms and not forms guessed from inadequate training data.
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SUBJECT: table: subject/concept/gloss gloss subject_translation/concept_translation subject_base
1SG - I niya
2SG - You kiya
3SG - S/he wiya
1PL - Plural I niyanân
2I - Inclusive You & I (plural/singular) kiyanaw

2PL - Plural You kiyanâwâw
3PL - Plural She/He wiyawâw
3' - 4th Person John okosisa
O - It (inanimate) ôma

OP - They (inanimate) anihi
O' - His/her object (inanimate) John omaskisina

O'P - His/her objects (inanimate) John omaskisina

Figure 3: A screenshot of pronoun definitions for nêhiyawêwin in the ‘Gramble’ tabular
programming language. By design, source files are meant to look familiar to people with
experience using spreadsheets, so that non-programmers can understand and maintain
them. The language is not just a spreadsheet, however; it is a declarative programming
language combining many of the capabilities of XFST, LEXC, and SQL.

time, as with English. In these cases, the standard approach is to build a
pronunciation dictionary which is often either created entirely by hand or
involves a significant amount of human intervention to handle exceptions.

Nearly all Indigenous languages spoken in Canada, including the lan-
guages involved in this project, have relatively newly developed writing sys-
tems. While this means that the languages’ orthographic forms do not devi-
ate greatly from their pronunciation forms, it also means that in many cases
there is not an agreed-upon standard, and that even when a standard is set,
it is often not used unanimously across the language community (Hinton,
2014). Handling this level of variation presents a challenge to developing
natural language processing tools. This problem is further compounded by
the fact that many Indigenous languages are comprised of multiple dialects.

Our project has partially circumvented the complexity of multiple di-
alects and orthographies because there is a standard orthography that has
been chosen in the educational organizations we are partnered with (even if
that standard is not unanimously used in the community), and our primary
use case for speech synthesis is to generate speech for existing text-based
tools like dictionaries and verb conjugators (§3.2) which themselves are im-
plemented in specific orthographies and dialects. This dialectal and ortho-
graphic consistency means that rule-based approaches to G2P are feasible,
and indeed they already exist for the three languages in question as for many
other Canadian Indigenous languages (Pine, Littell, et al., 2022).
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One danger of this approach, however, is that the adoption of a particular
dialect or orthography to the exclusion of others can be inferred to be a form
of linguistic or orthographic prescriptivism (Perkins, 2020), even if it is not
the intention to prescribe the use of a particular dialect or writing system.

3.3. Audio Data Collection & Recording
Collecting training data is almost an afterthought in languages with mil-

lions of speakers: one simply hires a third-party voice actor, or (more likely)
uses one of many pre-existing datasets with appropriate licensing for speech
synthesis. For Indigenous language organizations, however, collecting train-
ing data comes with an enormous opportunity cost, since fluent speakers
are their most precious and limited resource. While it might be possible
for many organizations to commit one of their teachers to make 20 hours
of speech recordings to train a TTS system (possibly meaning 200+ hours
outside of the classroom, see §3.3.3), if the resulting system only practically
provides a few hours of additional educational value for students, this would
not be a good strategic investment. Accordingly, the following sections de-
scribe estimates for the amount of time required to create recordings as well
as some of our efforts to increase efficiency.

3.3.1. Recording Method
As part of the kick-off meeting (§3.1), the first author taught a 1-day

recording workshop to guide personnel through operating the recording equip-
ment used in the project. For recording, we use either a Zoom H6 recorder
for remote recording or a Scarlet Solo as an interface and Audio Technica
AT2020 large diaphragm condenser microphones mounted on a shock mount
and fitted with a pop filter, along with Neewer NW-12 portable tabletop iso-
lation shields. We record at 96 kHz/16 bit to lossless raw WAV format. This
quality is higher than required by speech synthesis, but is recommended for
archival quality by the Indigitization project (Bickel & Dupont, 2018), the
project from which many of our workshop materials were sourced. Workshop
participants were encouraged to maintain consistent volume, speaking rate,
and 20 cm distance from the microphone throughout the recording sessions.

Our recording prompts represent sentences that have value beyond just
the TTS project. That is, instead of selecting prompts that represent pho-
netic balance in a corpus as in Veaux et al. (2013), we are recording unfiltered
sentences from dictionaries or stories, histories and legends. This may mean
that our data is more repetitive, less efficient or that we eventually need to
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supplement our dataset with examples containing particularly rare phonemes
or phoneme sequences, but since recordings of this quality are rare for the
languages described, we wanted to have them be useful beyond the project.

3.3.2. Common Voice
Unifying the text, recording, and modelling streams of the project is a

logistically difficult task. Personnel within each stream are spread across
three continents and five time zones, so most of our work is accomplished
asynchronously. Many speech synthesis projects use local software (Clark
& Bakos, 2015; Draxler & Jänsch, 2004), but managing the transfer of data
between the three streams would be error-prone and require a high amount of
coordination. To streamline the transfer of data between all parties involved
in the project, we forked Mozilla’s Common Voice web application (CVWA)
(Ardila et al., 2020; Common Voice, 2022) to adapt it to our needs.

Common Voice is a crowdsourcing project developed by the Mozilla Foun-
dation that allows for volunteers to donate recordings of their voices to an
open-source speech database. The interface also allows volunteers to donate
their time by validating recordings. There are large datasets for over 100 lan-
guages in the latest released version (Version 13.0); as of writing, the English
corpus contains 3 209 hours (2 429 validated) of utterance-aligned speech.

Our fork of the CVWA allows us to have a single, centralized location
for uploading, archiving, recording, and retrieving all text and speech data
related to the project. However, we were not able to simply direct our users
to the platform for several reasons. Most importantly, as discussed in §Ap-
pendix A, maintaining community-restricted access to and control of the data
is absolutely vital. While Common Voice’s goal of a radically open-source
speech dataset is commendable for English, it is not appropriate in our con-
text. To address this, we put our version behind a web gateway with a strict
allowlist that only permits project members to access the site. Furthermore,
the CVWA compresses all recordings using an MP3 encoding and uses a
48 kHz sampling rate by default. Ardila et al. (2020) state that using a lossy
encoding for their data was a decision made to improve browser compatibil-
ity. Presumably, since the CVWA is deployed internationally, a compressed
version of the audio also reduces network transfer issues. We instead record
and store a lossless version of the audio suitable for archiving.

Our version of the CVWA is implemented with a continuous deployment
pipeline that rebuilds and deploys the app when either the application code
is changed or text data is uploaded. The resulting workflow is that personnel
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from the text stream upload plain text files with verified text to the GitHub
repository storing the code, which triggers a new build of the application,
and personnel in the recording stream are subsequently notified that there
are more utterances to record. Finally, the modelling stream personnel can
retrieve all data for specific languages or speakers from the same location
when recording is complete.

3.3.3. Setting Realistic Estimates for Recording
It is difficult to estimate how much time is required to create a dataset

of recorded speech, due to numerous challenges that vary between record-
ing contexts. The challenges in recording that we have experienced can
be coarsely categorized as being related to recording environment, software,
speaker availability or experience with voice acting.

The speakers of the languages involved in this project are generally al-
ready working in a variety of capacities, with many competing demands on
their time, meaning that their availability is often a significant limiting fac-
tor. Additionally, some of our initial recording environments were located in
schools (in part to reduce the travel time for speakers). However, because
the school was not a dedicated and permanent recording environment, there
was extra time spent setting up and tearing down the equipment for each
session. There were also periodic noises from inside or outside the school that
would require that we temporarily stop recording, and since it was the pri-
mary workplace of the speaker, there would also be occasional interruptions
or competing interests for their time.

Recording in non-dedicated recording environments using SpeechRecorder
(Clark & Bakos, 2015) to record sentence-by-sentence, we were obtaining
an average of approximately 3.5 minutes of recordings per 1.5 hour session
(studio time/recording time ratio of 25:1). By contrast, when we switched
to using our version of the Common Voice web application (CVWA) and to
longer 4 hour sessions at a permanent recording studio off-site, we began
averaging 30 minutes of recordings per 4 hour session, slightly more than 3
times our previous rate. This is partly due to reduced interruptions in the
off-site recording studio, but we speculate it is also a result of the gamification
features in CVWA, such as progress bars with daily targets for recordings
and positive messaging following uploads, which seem to encourage speakers.

We now use a rough, conservative 10:1 estimate for future recordings
assuming we are able to use CVWA, the speaker has participated in an in-
troductory recording/voice acting workshop, and the recording environment
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is free of disruptions. In other words, under the aforementioned conditions,
we estimate it will take 100 hours in the recording booth to create 10 hours
of raw data (including silence), with additional time needed for verifying and
correcting recordings, and post-processing to create the dataset.

3.4. Evaluation
In addition to the many challenges involved in gathering data and building

TTS systems in low-resource contexts, evaluating the resulting speech is also
extremely difficult. We discuss the theoretical aspects of this challenge in
greater depth in §4.4, but we provide a quick synopsis of the evaluation
methodology for our project in this section as well.

Since the total number of speakers of some of the languages we are work-
ing with is less than the number of participants required for statistically
significant subjective listening tests (Wester et al., 2015), we cannot rely on
them for routine evaluation in our project. Even for languages with larger
numbers of speakers, we must be judicious when choosing when to spend
valuable time performing large-scale subjective evaluations.

For our project, we only intend to evaluate our systems using larger-
scale subjective MOS-style listening tests at the very end of the project,
prior to publicly implementing them. In the interim in order to help triage
our models, we conduct our evaluations in a more targeted way, through
qualitative interviews with language speakers who are directly involved in
the project. Those of us who are speakers of these languages have come
up with a test set of words and sentences that are representative of the
domain we wish to synthesize. We then synthesize audio using the EveryVoice
TTS toolkit (§5) and generate a time-aligned ‘ReadAlong’ of the synthesized
speech (Littell et al., 2022; Pine et al., 2023) which then allows project
member evaluators who speak the languages in question to annotate errors
specific to individual words or phrases. These errors are then analyzed by
the members of the project involved in TTS modelling to help guide future
data collection or changes to the TTS modelling design (see Figure 2 for a
diagram of this process).

4. Four Challenges for Low-Resource Educational TTS

The following subsections describe some of the main challenges for mod-
elling and evaluating low-resource educational TTS, with a variety of possible
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preliminary strategies for addressing them. We have written this section with
the hopes that it will catalyze increased future research efforts in these areas.

4.1. Controllability & Pedagogical TTS
Speech synthesis has been shown to be an effective educational aid in

computer-aided language learning (CALL), helping to improve learner abili-
ties in a wide range of tasks such as listening comprehension, writing skills,
pronunciation, and discerning differences in accent (Bione et al., 2017; Liakin
et al., 2017; Lim, 2022). Despite these positive results, most existing studies
on TTS in the classroom employed off-the-shelf TTS systems that were not
tailored to an educational context. Unlike a typical non-educational TTS
use case (say, in turn-by-turn navigation), our primary goal is not just to be
intelligible to people that are already fluent in the language, but to provide
pronunciation help for a non-fluent audience. Targeting pedagogical-quality
TTS in the way that was requested by the Indigenous partners in the project
(see §Appendix A) leads to increased demands on the controllability and
naturalness of the synthesized speech.

In this paper, we will use the term ‘pedagogical speech’ in a narrow sense,
as being one of two types of speech with educational value. Pedagogical
speech in the language classroom represents a particular style which is slower
and more carefully enunciated than typical speech. This can involve a slower
pace, the separation of syllables, the hyper-articulation of difficult or easy-
to-miss sounds (e.g. glottal stops), and the restoration of reduced or dropped
segments (e.g. short vowels). This does not imply that more rapid, natural-
sounding speech has no place in the classroom. A typical language learner
might first be exposed to pedagogical speech, in order to master listening and
pronunciation skills; as the learner gains expertise and confidence, they would
be encouraged to become comfortable with more natural speech. Ideally, our
systems should be able to produce both pedagogical and natural speech.

There are existing efforts to address inference-time controls over style,
for example, in the synthesis of Lombard speech (Hu et al., 2021) and emo-
tion (Kosgi et al., 2022). An alternative approach uses Global Style Tokens
(Y. Wang et al., 2018), embeddings learned jointly during training using
an additional reference encoder alongside the text encoder in a neural TTS
system, which during training may learn to represent factors not explicitly
accounted for by the text. This typically accounts for the suprasegmental
elements of prosody such as pitch contours, as well as utterance-level factors
such as speaking rate, emotion or background noise. In other work carried
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out by members of our project, Nishihara et al. (In Submission) present a
PCA-based technique for controlling these multiple characteristics of hyper-
articulated speech by moving along a single dimension, providing a practical
way for users to control the degree of hyperarticulation at inference time.

Beyond stylistic manipulation in synthesized speech, controllability is im-
portant in an educational setting for making corrections. We anticipate pos-
sible pronunciation errors with suprasegmental features such as stress and
tone. Orthographies vary in terms of whether these features are marked, and
even where they are marked in the languages we are working with, not all
writers use them reliably. It is therefore likely that our systems will gener-
ate at least some outputs with incorrect or unnatural prosody, leading to a
question of how, practically, we can correct this. Recently, models such as
FastSpeech 2 (Ren et al., 2021) and FastPitch (Łańcucki, 2021) have added
explicit pitch, energy, and duration prediction modules, rather than relying
on implicit prosody prediction like other architectures such as Tacotron (Shen
et al., 2018; Y. Wang et al., 2017). This also allows for fine-grained control
of these parameters at the frame or phoneme level when synthesizing speech
with these models.

Instead of asking the user to use a command-line or graphical user inter-
face to adjust prosodic features in speech, Aylett et al. (2019) investigate the
use of ‘voice puppetry’, in which humans give recorded corrections to supply
a target prosodic contour, and the output of the TTS is adjusted to match
it. This kind of feedback, used to adjust the manipulable representations of
the models mentioned above, could be an intuitive way for non-experts to
control and adjust prosody when necessary. Such a system could be used,
for example, to set initial values for pitch and duration sliders across an en-
tire utterance simply by speaking aloud, which could then be followed by
additional fine adjustments as necessary.

4.2. Data Efficiency
The availability and quality of transcribed speech data are major concerns

for training TTS models. While our project is well-resourced enough to be
able to create more than enough training data, albeit with some challenges
(§3.3.3), this is not the case for many language communities. One pillar of our
project, therefore, is to reduce the amount of data needed to train a modern
TTS system: not simply turning Indigenous language TTS into a theoretical
possibility, but to the point where training such a system is a sound strategic
decision for resource-limited organizations. From an educational perspective,
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that is one of the core value propositions of TTS: the ability to create a very
large (even infinite) collection of recordings by recording only a subset of
them. The more we can reduce training data requirements, the better this
promise is fulfilled.

Perhaps due to the prevalence of autoregressive, attention-based TTS
systems such as Tacotron 2, there seems to be a perception that the data
requirements of such systems (i.e. tens of hours of speech) are representative
of neural TTS in general. However, this requirement comes in part from
the need to learn robust alignments between input symbols and much longer
sequences of acoustic features, the failure of which constitutes a major class
of errors for attention-based TTS (Valentini-Botinhao & King, 2021). Such
attention failures are more likely to occur with smaller training corpora,
resulting in completely unintelligible TTS output; we have previously found
the cut-off to be somewhere between 5 and 10 hours in experiments on English
using Tacotron 2 (Pine, Wells, et al., 2022).

By contrast, non-autoregressive systems such as FastSpeech (Ren et al.,
2021; Ren et al., 2019) and FastPitch (Łańcucki, 2021) instead either in-
corporate an explicit duration predictor learned from forced alignments or
use an alternative alignment module with a strict monotonic prior (Bad-
lani et al., 2022). These approaches provide a more stable basis for training
the decoder module to predict acoustic features, as the alignment portion
of the learning process typically converges much more quickly than tradi-
tional attention-based methods. Badlani et al. (2022) found that replacing
the attention module in a Tacotron 2 system with a monotonic alignment
framework reduces overall convergence time. In previous work, we were able
to train intelligible TTS systems from scratch using a modified FastSpeech 2
architecture with as little as 15 minutes of English speech, 25 minutes of
SENĆOTEN and 3.5 hours of Kanyen’kéha (Pine, Wells, et al., 2022).

Our call to researchers working on novel neural architectures for TTS is
to consider the data efficiency of the models they develop, and to report the
results of their systems on limited amounts of data as in Pine, Wells, et al.
(2022) and Kharitonov et al. (2023).

4.3. Cross-lingual Transfer Learning
The data efficiency problem can also be approached by making use of

existing data in other languages more effectively. A common technique is to
train on combined corpora including data from multiple languages simultane-
ously, as in Demirsahin et al. (2018), Gutkin et al. (2018), Korte et al. (2020),
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and Y. Zhang et al. (2019). By contrast, transfer learning approaches first
train a source model in a well-resourced setting – for example a multi-speaker
TTS model trained on hundreds of hours of transcribed English speech – then
fine-tune it using a smaller amount of target-domain data, as in Y.-J. Chen
et al. (2019), Latorre et al. (2021), and Wells and Richmond (2021).

In both cases, it is necessary to unify the input vocabulary of the model,
which for TTS usually comprises either the set of characters used to write
the target languages, or their combined phone inventories. The simplest
approach is to take the union of input symbols across all target languages,
although this may fail to address certain problems when working with a di-
verse set of languages. Y. Zhang et al. (2019) noted that this could lead
to very large input spaces if using character inputs from multiple different
writing systems. For phone inputs, symbols from the International Phonetic
Alphabet (IPA) are useful since they are intended to provide a universal
phonetic representation across languages. However, problems of exploding
vocabulary size persist depending on how broad or narrow the transcriptions
are, among other language-specific choices in phonetic description (Demir-
sahin et al., 2018). This has implications for both multilingual training and
fine-tuning approaches: if language-specific symbol inventories do not over-
lap, the potential benefits from shared encoder training will be limited, since
certain parts of the model (namely the embeddings for symbols unseen in
source languages) will only ever be trained on limited target-language data.
Since our target languages indeed represent a diverse group with limited
phonemic overlap and different orthographic conventions, neither character
nor phone inputs are particularly well suited.

Rather than take as input the specific phoneme inventories of each lan-
guage, we consider features below the level of the phoneme. Articulatory
features (binary features describing the configuration of the human vocal ap-
paratus as a sound is being made) are a natural starting point: all possible
human speech sounds can be differentiated using an inventory of roughly 20
features for place and manner of articulation, and there are existing soft-
ware libraries that can perform this conversion (Mortensen et al., 2016).
For example, the phone inventories shown in Fig. 1 on page 6, demonstrate
that many phones are unique to a single language if taken as atomic IPA
symbols, but differ only by a single phonological feature, for example, /t/
shared across Kanyen’kéha, SENĆOTEN, and nêhiyawêwin and /t’/ unique
to SENĆOTEN. To make this point more concrete, there is a 17% overlap
between phone sets in Kanyen’kéha (moh) and SENĆOTEN (str) as seen
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in Fig. 1, but there is a 79% overlap between the sets of articulatory fea-
tures in each language (as calculated by our previous implementation (Pine,
Wells, et al., 2022)) using 24 segmental features from PanPhon (Mortensen
et al., 2016) plus an additional 7 features representing suprasegmental fea-
tures inspired by W. S.-Y. Wang (1967). Using these features instead of
language-specific phoneme inventories avoids the problem of distinct input
vocabularies, and thus moves us substantially closer to the ideal of being
able to easily fine-tune a pre-existing model on a new language. This ap-
proach has already been shown to help in training multilingual TTS models
for low-resource languages of India (Gutkin et al., 2018), and to be effective
for cross-lingual transfer learning as well (Lux & Vu, 2022; Staib et al., 2020a;
Wells & Richmond, 2021).

In extending this work to Indigenous languages, with potentially very
different sound inventories compared to English, future research should also
consider using data from additional languages, which would allow for greater
coverage over possible combinations of phonological features compared to
pre-training on a single high-resource language, as previously investigated by
Do et al. (2022) and Maniati et al. (2021).

4.4. Evaluation
Evaluation of TTS systems relies heavily on listening tests, with fluent

speakers of the target language being asked to make judgements about the
quality of synthetic speech or to transcribe synthesized utterances, and with
word error rates over their transcriptions being interpreted as a measure of
intelligibility. This is a slow and expensive process, with recruitment and
payment of participants presenting a significant bottleneck in the develop-
ment of TTS systems even for languages such as English. If we add in the
lack of availability of fluent speaker time for our target Indigenous languages,
the task becomes even more daunting.

These costs have inspired the adoption of so-called objective measures
of evaluation. These include simple metrics like spectral distance (e.g. Mel
cepstral distortion and log spectral distance), framewise percentage of F0
voicing errors or F0 RMSE, and more complex metrics based on auditory
models (e.g. PESQ (Rix et al., 2001), POLQA (Beerends et al., 2013), STOI
(Taal et al., 2010)). Recent efforts in the automatic evaluation of synthetic
speech have seen the rise of data-driven quality prediction models based on
neural networks. The most prominent such models are AutoMOS (Patton
et al., 2016), trained on a large set of proprietary data (47 320 data points),
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and MOSNet (Lo et al., 2019), trained on data from the Voice Conversion
Challenge (13 580 data points). However, experience shows that mean opin-
ion score (MOS) prediction requires large amounts of training data and is
particularly challenging for unseen speakers, listeners and systems (Huang
et al., 2022). Other work focuses on intelligibility testing, for example, using
automatic speech recognition (ASR) systems to transcribe synthetic speech
rather than human listeners (J. Taylor & Richmond, 2021). ASR is its own
data-intensive problem, however, limiting this approach in practice to high-
resource languages such as English. The question of whether objective (or
automatic) evaluation methods that do not require human participants can
be applied to our particular context remains open, but we see some promis-
ing directions to follow. The limited time and availability of native-speaker
evaluators means that they will not be able to rate every sample from ev-
ery system we build. While we do not want to release any systems without
some native-speaker evaluation and approval, we also need to be respectful
of evaluators’ time. These evaluators are usually busy teachers and language
professionals, and we must consider the opportunity cost that comes with
asking them to evaluate potentially hundreds of experimental systems.

Recruiting student learners and linguists familiar with the target language
may help alleviate this by serving as a first-pass screening to decide which
samples most need native-speaker judgment. While not fluent speakers, we
believe that they could bolster the existing participant resources available for
listening test evaluations. For example, though they may not be able to make
judgements on questions of overall naturalness without being speakers of the
language, linguists can potentially provide a judgment on questions like “Does
this utterance contain a lateral fricative?”. This could allow for more efficient
iteration when developing particular features, for example, checking speech
output against a candidate G2P system without using valuable fluent speaker
time just to ensure each system is basically linguistically correct. Crucially,
however, fluent speakers should not be replaced by learner or linguist eval-
uators. Rather, this first-pass evaluation could allow limited fluent speaker
effort to then be prioritised on making final judgements about the suitabil-
ity of the voice for the target application in light of their organization’s and
community’s needs, which only they can speak to.

As a proxy for measuring intelligibility as well as spotting pronunciation
errors, rather than using an ASR model (which itself would rely on huge lan-
guage resources for training), phonological feature detectors as in Qamhan
et al. (2021), could present a more efficient alternative. In this framework,
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in order to quantify pronunciation errors, sequences of phonological features
estimated for a synthetic utterance are compared to canonical features de-
rived from the input text (or to those extracted from a natural reference
signal). These detectors can in principle be trained with multilingual speech
data, potentially obviating a lack of data in any given language of study for
evaluating segmental features of synthetic speech. Finally, to alleviate the
need for huge amounts of human scores to train automatic evaluation models,
we may investigate the use of self-supervised speech representation models
to better leverage any small amount of labelled data, following encouraging
results on zero-shot and out-of-domain tasks by Cooper et al. (2022).

Importantly, future work on automatic methods to reduce the resource
requirements for evaluation should only ever be used to triage models before
human evaluation by fluent speakers, not replace such evaluation. All models
must be thoroughly evaluated prior to public release, but more automated
methods would be helpful in determining which models to present to the final
stage of evaluation.

5. Motivation & Design of the EveryVoice TTS Toolkit

After determining some of the modelling requirements of a potential TTS
system (§4), we set about determining the appropriate toolkit to include
in our ‘repeatable recipe’ (§2.4) as well as for our own research and use in
educational applications. We surveyed a range of existing TTS toolkits which
we summarize in §5.1, and introduce our preliminary implementation of a new
toolkit, titled EveryVoice TTS (§5.2) along with benchmark naturalness and
intelligibility evaluation results (§5.3). We also direct the interested reader to
Appendix B and Appendix C which discuss and compare important features
for our use case between EveryVoice TTS and six other popular existing
toolkits in greater detail.

5.1. Existing TTS Toolkits
There are many excellent toolkits for developing neural speech synthesis

models (Gölge & The Coqui TTS Team, 2021; Hayashi et al., 2021; Kuchaiev
et al., 2018; Lux et al., 2021; C. Wang et al., 2021; Watanabe et al., 2018; H.
Zhang et al., 2022). However, it is not immediately obvious how to evaluate
the existing toolkits with respect to our project, and whether we should
adopt any of them for use in our repeatable recipe. The vast majority of
existing toolkits prioritize research applications by implementing a wide array
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of models and supporting many non-TTS tasks as well. For certain research
applications this variety of models and tasks is advantageous, but it brings
increased complexity which could be confusing for users who are only looking
for a model to use for limited-resource TTS.

As one concrete example, the IMS Toucan toolkit (Lux et al., 2021)
proposes a single main architecture, and is specifically geared towards low-
resource applications. They implement a two-stage system comprised of a
modified FastSpeech2 feature prediction network paired with either an Av-
ocodo (Bak et al., 2023) or BigVGAN (Lee et al., 2023) vocoder if the user
is willing to compromise inference speed for naturalness (a decision that is
documented and explained to the user). The decision to limit the toolkit in
terms of available architectures provides a sensible baseline model for new
users looking to build TTS for their own language, removing much of the
initial guesswork compared to the larger selection of possible architectures
included in other toolkits such as ESPnet (Watanabe et al., 2018), Coqui
TTS (Gölge & The Coqui TTS Team, 2021) and NeMo (Kuchaiev et al.,
2019). However, much of the hyperparameter configuration in IMS Toucan
is hard-coded in the model implementation code itself, and setting up train-
ing pipelines for new languages involves modifying these modules directly.
Alternatively, other toolkits such as NeMo and Coqui TTS provide powerful
and comprehensive control of hyperparameter settings through external con-
figuration files, providing a clear pathway for users to easily modify an initial
baseline model once selected from the many on offer. An ideal toolkit for our
repeatable recipe should combine the strengths of both of these approaches,
by providing a baseline model tuned for low-resource TTS alongside strong
configuration tooling, with explicit guidance, documentation and hyperpa-
rameter validation for users working with diverse languages and datasets.

5.2. EveryVoice TTS Toolkit
To help address some of the above-mentioned task-specific challenges,

we present the development of a new TTS toolkit, named the EveryVoice
TTS toolkit. EveryVoice TTS has been designed to provide a unified speech
synthesis toolkit specifically tailored to limited-data TTS applications. Cur-
rently, the model we have chosen is a two-stage system based on specific
considerations for our use case primarily around phone-level controllability
(§4.1) and data-efficiency (§4.2). The system is comprised of a feature predic-
tion network based on FastSpeech2 (Ren et al., 2021), and a vocoder based
on iSTFTNet (Kaneko et al., 2022). While so-called end-to-end systems
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like VITS (Kim et al., 2021) are capable of producing impressively natural
speech, in low-resource applications, two-stage systems are currently more
data efficient since the vocoder is trained without text, lessening the bur-
den of required transcribed data. As discussed in §4.1, FastSpeech2 predicts
pitch, energy, and duration at the phone level, which makes it a suitable
baseline model for experimenting with controllability. The model has also
been shown to be data efficient, requiring as little as 15 minutes of data to
produce intelligible speech (Pine, Wells, et al., 2022). To facilitate transfer
learning (§4.3), we implement the possibility of training using phonological
features as calculated by PanPhon (Mortensen et al., 2016) and Gi2Pi (Pine,
Littell, et al., 2022), which provides out-of-the-box grapheme to phoneme
conversion for dozens of Indigenous languages. Our choice of model architec-
ture here should be understood as a sensible baseline for low-resource TTS,
but we hope to continually adjust the model and default hyperparameters as
research with low-resource TTS architectures advances.

Beyond the aforementioned decisions regarding modelling, EveryVoice
TTS has been designed with adaptation to new languages and datasets in
mind. This includes providing tools and guidance to assist users in creating
and preprocessing their own datasets, for example by providing audio seg-
mentation tools, removing silence, and detecting and removing outlier audio
samples. We also provide a configuration wizard command line interface tool
for supporting users in designing hyperparameter configuration files to suit
their languages. For more implementation details and comparisons with other
toolkits, we direct the interested reader to Appendix B and Appendix C.

5.3. Benchmark Evaluation
To help justify our choice of model architecture, we provide the results

from an evaluation of the EveryVoice TTS architecture, with English as the
test language. In order to limit our evaluation to a manageable size, we limit
our comparison of EveryVoice TTS to being against models trained with
the NeMo toolkit (Kuchaiev et al., 2019), despite the larger list of toolkits
surveyed in Appendix B. NeMo was chosen because it appeared to satisfy
the most requirements of any of the toolkits that we surveyed. Specifically,
it offers production-ready implementations of data-efficient TTS models, ro-
bust tools for data preparation, and thorough guides and documentation,
including introductory content to the field of speech synthesis.

We trained two feature prediction models with EveryVoice TTS and two
other feature prediction models with a Fastpitch implementation from NeMo.
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All models were trained using either the full LJ Speech (Ito & Johnson, 2017)
dataset or a fixed 30-minute subset, with input texts converted to phone se-
quences. For the NeMo models, we synthesized audio samples from the gen-
erated Mel spectrograms using NeMo’s pre-trained ‘tts_en_hifigan’ vocoder
checkpoint (NVIDIA, 2023) which was trained on the LJ Speech dataset as
well as Mel spectrograms generated from FastPitch, Tacotron2 and TalkNet
(Beliaev & Ginsburg, 2021). We generated audio samples for the EveryVoice
TTS models using a pre-trained EveryVoice TTS vocoder checkpoint that
was trained for 2 500 000 steps on ground-truth Mel spectrograms from the
LJ Speech, LibriTTS (Zen et al., 2019), and VCTK (Yamagishi et al., 2019)
datasets using the ‘C8C8I’ iSTFTNet model specification and default hyper-
parameters (Kaneko et al., 2022). Since the NeMo vocoder had been trained
on generated Mel spectrograms as well, we also finetuned our pre-trained
EveryVoice TTS vocoder checkpoint with the Mel spectrograms from our
EveryVoice TTS feature prediction models. We then conducted a short (15
minute) listening test that compared the two NeMo models against our two
EveryVoice TTS models using both the fine-tuned EveryVoice TTS vocoder
and basic pre-trained checkpoint. We recruited 30 participants through Pro-
lific, and presented each with 28 MOS-style questions where they were asked
to rank each sample based on naturalness from 1 to 5.

Our MOS results are presented in Figure 4 and Table 1. For both dataset
sizes, we find that EveryVoice TTS with a fine-tuned vocoder performs com-
parably to NeMo. We tested for significant differences between systems using
the Mann-Whitney U test, with a Bonferroni correction applied to account for
repeated pairwise comparisons, and found no significant difference between
ratings for the EveryVoice 30m FT (finetuned) and NeMo 30m, nor between
EveryVoice Full FT and NeMo Full (p = 0.05, corrected α = p/21 = 0.0024).
There was also no significant difference between EveryVoice 30m and Ev-
eryVoice Full, using our pre-trained vocoder without fine-tuning. These re-
sults reflect the impact of training vocoders to synthesize natural speech from
TTS-predicted Mel spectrograms. Artefacts introduced by our pre-trained
vocoder, which has only seen Mel spectrograms derived from natural speech,
apparently drown out any other differences between our EveryVoice models
trained on differing amounts of data. Fine-tuning on predicted Mel spectro-
grams provides a significant increase in perceived quality, and further appears
to allow listeners to discriminate between models trained on 30m and Full
corpus subsets. The two NeMo models show clear differences between 30m
and Full corpus subsets likely because their pretrained vocoder checkpoint,
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trained on a mixture of natural and synthesized Mel spectrograms, does not
produce the same distracting artefacts.
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Figure 4: Naturalness MOS ratings for EveryVoice TTS (EV) and NeMo models trained
on the full and 30 minute subset of the LJ Speech dataset. Diamonds indicate average
MOS values per voice, and circles indicate outliers.

Voice MOS ↑ WER (%) ↓
EveryVoice 30m 1.87 ± 0.16 18.77
EveryVoice 30m FT 2.35 ± 0.19 18.50
NeMo 30m 2.65 ± 0.20 16.92
EveryVoice Full 1.97 ± 0.18 8.72
EveryVoice Full FT 3.37 ± 0.17 8.35
NeMo Full 3.73 ± 0.17 7.96
Natural Speech 4.63 ± 0.11 5.98

Table 1: Evaluation results for both EveryVoice TTS and NeMo models trained on the full
and 30 minute subset of the LJ Speech dataset. MOS indicates mean opinion score results
with 95% confidence intervals from our subjective listening test and WER (%) indicates
the word error rates from our ASR-based intelligibility evaluation. ‘FT’ indicates that the
vocoder used to synthesize samples was finetuned on generated Mel spectrograms from
the EveryVoice TTS feature prediction network.

In addition to subjective naturalness ratings, we present an objective
analysis of system intelligibility using word error rates (WER), as shown in
Table 1. To word error rates, we employed Whisper (Radford et al., 2023), a
robust general-purpose speech recognition model, using the ‘openai/whisper-
base’ model (OpenAI, 2023). The evaluation was conducted on a test set from
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the LJ Speech dataset, comprising 512 sentences which were synthesized with
each model. For both dataset sizes, we find that EveryVoice TTS models are
within 2% WER of the NeMo models. We also see that the WER for samples
generated with a finetuned vocoder are within 0.5% of their base checkpoint
equivalents, which further suggests that the gap between MOS scores for fine-
tuned and base EveryVoice models is influenced by vocoder-related artefacts
affecting naturalness and not model intelligibility.

These results indicate that EveryVoice can produce speech of comparable
naturalness and intelligibility to an existing production-ready TTS toolkit.
We speculate that the observed gap in performance is largely attributable
to vocoder training strategies rather than gross architectural differences, but
we intend to investigate this in greater detail in future work. Even with
our initial baseline architecture, we believe that EveryVoice is a good choice
for certain low-resource TTS use cases, due to its specific supports for new
language configuration, misuse prevention, and dataset creation. Ultimately,
the decision of which toolkit to use will depend largely on the availability of
required features, and the degree of expertise held by the users of the toolkit.

6. Conclusion

In this paper, we have presented the motivation for the Speech Generation
for Indigenous Language Education project, providing signposts and a road
map for readers who are looking to research, develop, and/or manage TTS
projects for low-resource languages (§1.2). To help situate and motivate our
research, we described the sociolinguistic context of this research and prior
work (§2). Ethical issues associated with some (but certainly not all) prior
work on TTS for Indigenous languages are discussed in §2.3; such issues
related to potential misuse of the technology were also an important part
of early discussions among the collaborators (Appendix A), and motivate
the discussion in Appendix C.1.2. Our methodology section (§3) describes
in detail how our project is organized and how we co-developed the shared
vision of the project with each of the collaborating organizations involved.
We also detailed four key theoretical challenges for educational low-resource
TTS (§4); controllability and ‘pedagogical’ style for TTS, data efficiency,
cross-lingual transfer learning, and evaluation. For each of these sections, we
describe prior work in the area and hope that the section motivates future
research related to it.
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We have partially addressed some of the technical challenges described
in this paper through the adaptation of Mozilla’s Common Voice platform
for gathering recordings, and the development of our own speech synthe-
sis toolkit, EveryVoice TTS, following a survey of existing neural speech
synthesis toolkits (findings of the survey are presented in Appendix B and
Appendix C).

While our evaluation for the EveryVoice TTS toolkit (§5) shows mod-
est but comparable results with the existing NeMo toolkit, we believe that
the design of EveryVoice TTS fills an ecological niche different from that of
many other excellent TTS toolkits: it is particularly suitable for low-resource
languages with few fluent speakers because it is extremely data-efficient (it
requires very little speech training data), and it has been designed to be
user-friendly when adapting to a new language or dataset.

The following list provides a summary of recommendations drawn from
our project, which we hope will assist similar limited-resource TTS efforts:

• ‘Low-resource’ does not mean no-resource, even when no training data
is available. Consulting available documentation and community-held
knowledge is key to addressing gaps in data (§1 and §2).

• Ensure that the project is led and designed by – or co-led and co-
designed with – organizations that represent the language community
which, ideally, will benefit from the speech synthesis technology. This
structure will help determine the correct goals and requirements of the
speech synthesis efforts from the outset (§2 and §3).

• Collaboratively define the requirements of the TTS system with com-
munity stakeholders. This will help set the priorities for all other as-
pects of the project including recording and gathering text, and select-
ing a model architecture (§2.2).

• Determine the domain for synthesis in advance. This will help identify
whether there is adequate available text in this domain that can be syn-
thesized. If an insufficient amount of text exists in the target language,
consider building a generative text model for a particular pattern of
the grammar which can create both targeted training and evaluation
data as well as provide a useful educational application in the process
(§3.2). Specifying the intended domain for synthesis in advance will
also help guide recording efforts (§3.3).
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• Where possible, use cloud-based software like Mozilla’s Common Voice
for recording, since the streamlined and gamified process encourages
speakers. It also reduces human error related to file labelling, storage
and transfer (§3.3.2).

• Do not underestimate the amount of time needed for recording, partic-
ularly in an ad-hoc recording environment. It can easily take ten hours
to produce a single hour of data (§3.3.3).

• Review available toolkits and assess which one contains the features
necessary for your project as well as adequate support for your devel-
opment team (§5 and Appendix C).

• Mitigate some of the potential harms associated with the misuse of
TTS technology by adopting a conservative data and model access pol-
icy by default, and transparently discuss the issues with community
stakeholders (§Appendix A and Appendix C.1.2).
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Appendix A. Summary of Brainstorming Questions

The responses to the questions listed above are summarized in the fol-
lowing paragraphs.

What does it sound like? The summary of the discussion for this ques-
tion was that ‘voice quality’ was important, with a particular focus on speech
that “captures the song of the language” (i.e. prosody). Participants imag-
ined both clear pronunciation (pedagogical register, see (§4)) as well as a
normal conversational register. Variation and relatability of the speakers was
cited as a key desire by participants in multiple groups. Specifically, partici-
pants described wanting to have control over speaker variation with respect
to gender, age, and dialect. Some participants also requested that there be a
method to adapt the speech to sound like the user (i.e. speaker adaptation).
These are techniques that some participants felt could be useful for giving
learners more relatable speech on which to model their pronunciation.

Where are the people using the tool? What are they doing with it?
This question elicited a wide variety of responses; participants could imagine
the tool being used just about anywhere. Although discussions often began
with a focus on its use for their students in the classroom, participant re-
sponses would often drift towards the use of the tool outside of the classroom
to support in-classroom work. Specifically, how it could free teachers up from
spending time creating resources for students and allow them to spend more
time on instruction and individualized student support. In order to support
students outside the classroom, offline use was also described as desirable, as
well as support on a wide variety of devices.

Imagine somebody misusing the technology, what are some things
that could go wrong? This question prompted very animated discussion,
as there were many opportunities for unethical applications of the technology
that were imagined by participants. Concerns included the production of
offensive words, either due to pronunciation errors by the model or offensive
inputs, ‘deep fakes’ where a respected Elder’s voice might be used to say
something false or insulting, culturally insensitive applications, or the ability
to produce speech from a speaker who has since passed away. There were
also concerns, as there are with many reference tools, that the standard
that happens to have been recorded could set a ‘standard dialect’, which
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might result in harmful dialectal bias. There was general consensus among
participants that once a speaker had passed away, the voice should no longer
sound like them and instead should be anonymized.

Many of these issues can be mitigated through proper restrictions around
access and control of the technology. The majority of the applications imag-
ined did not involve general-purpose synthesis where arbitrary and poten-
tially offensive text could be used as the input. There was consensus that
for closed systems, such as supplementing the SENĆOTEN dictionary or
Kawennón:nis, an identifiable voice is acceptable. However, if open input ap-
plications are developed for this project, it was decided that an identifiable
voice should never be used.

Appendix B. Summary of Selected TTS Toolkits

This section summarizes and briefly introduces selected publicly available
neural speech synthesis toolkits, which are later compared in Appendix C
with respect to features required for our context. We are not including con-
catenative toolkits such as Festival (P. Taylor et al., 1998), nor are we includ-
ing statistical parametric speech synthesis (SPSS) systems like HTS (Zen et
al., 2007) or MaryTTS (Schröder & Trouvain, 2003) despite their popularity
in some low-data scenarios (Harrigan et al., 2019; James et al., 2020). This
is because SPSS systems lack the naturalness of neural speech synthesis and
concatenative systems require data to be from a single speaker, which is a
requirement that we believe is too onerous in a context where many speakers
are elderly and their time is extremely limited. Additionally, while there con-
tinues to be active development in concatenative and statistical parametric
speech synthesis toolkits, the widespread popularity of neural methods means
that the tooling around neural-based toolkits is often more up-to-date. More-
over, whereas concatenative and SPSS techniques have historically been the
only options for limited-data TTS, some neural methods are now efficient
enough to be used in limited-data scenarios (§4.2).

B.1. Coqui TTS
With over 10 feature prediction (text-to-spectrogram) models, 8 vocoders

(spectrogram-to-wav), and 5 end-to-end models implemented, the open-source
Coqui TTS toolkit has the widest variety of speech synthesis systems of any
publicly available toolkit. The primary focus of Coqui, however, is not re-
search, they are a private business which markets its speech synthesis systems
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as a way to replace voice actors with artificially generated voices (Coqui,
2023a). In December 2023 the Coqui company announced it was shutting
down, although Coqui TTS continues to exist as an open-source repository.

B.2. ESPnet
The End-to-End Speech Processing toolkit (aka ESPnet) (Hayashi et al.,

2021; Watanabe et al., 2018) is an open-source platform for performing a
variety of tasks including automatic speech recognition (ASR), speech syn-
thesis, voice conversion, speech translation, and many other tasks. The first
version released was primarily focused on ASR, implemented in PyTorch and
Chainer, and heavily inspired by Kaldi. The second version, which at the
time of writing is still under development, has dropped the requirements
on Chainer and Kaldi and includes a host of other improvements including
multi-node/multi-GPU training.

B.3. fairseq S2

The fairseq S2 toolkit (C. Wang et al., 2021) adds speech synthesis
support to the larger Facebook AI engineered fairseq toolkit (Ott et al.,
2019) for sequence modelling.

Their paper is also the only paper of any of the toolkits here that compares
itself to existing toolkits. We include all of the toolkits that they include in
their survey except for OpenSeq2Seq (Kuchaiev et al., 2018), a TensorFlow-
based toolkit developed at NVIDIA that has since been archived in favour
of NeMo (B.5).

B.4. IMS Toucan
IMS Toucan is an open-source platform developed at the University of

Stuttgart. The system was first introduced in the 2021 Blizzard challenge
(Lux et al., 2021) and has a variety of specific considerations for a low-
resource context. Unlike the other toolkits reviewed, they propose a single
architecture; as of writing this is a modified FastSpeech2 (Ren et al., 2021)
system paired with either Avocodo (Bak et al., 2023) or BigVGAN (Lee et
al., 2023) as the vocoder.

B.5. NeMo
The NeMo, short for ‘Neural Modules’, toolkit is an open-source toolkit

developed by NVIDIA that supports TTS, ASR, and a variety of natural
language processing tasks (machine translation, LLMs etc).
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B.6. SpeechBrain
SpeechBrain (Ravanelli et al., 2021) is an open-source toolkit for con-

ducting research and development for a variety of speech processing tasks
including speech synthesis, ASR, and speech enhancement, among others.

B.7. EveryVoice
In addition to the existing toolkits described above, we include our pre-

liminary development of a new TTS toolkit, named the EveryVoice TTS
toolkit, for comparison. EveryVoice TTS, introduced in §5.2, has been de-
signed to provide a unified speech synthesis toolkit specifically tailored to
limited data TTS applications. In the following sections, we show that the
EveryVoice TTS toolkit combines features related to low-resource TTS in a
way that we believe will support our goal to make a repeatable recipe (§2.4),
and is currently unsupported in any one existing open source solution. We
are releasing the toolkit in a functional, but early, stage of development to
help encourage feature requests and additional requirements from the broader
community of low-resource speech synthesis practitioners.

Coqui
TTS

ESPnet Every
Voice

fairseq
S2

IMS-
Toucan

NeMo Speech
Brain

License MPL-
2.0

Apache-
2.0

MIT MIT Apache-
2.0

Apache-
2.0

Apache-
2.0

TTS only Yes No Yes No Yes No No
Associated
Paper

✗ ✓1 ✓ ✓2 ✓3 ✓4 ✓*5

Table B.2: Summary of basic information for existing toolkits. Only foundational paper
citations are included as there are many citations associated with some of these toolkits.
* indicates the associated paper only appears as a preprint. (Watanabe et al., 2018)1, (C.
Wang et al., 2021)2, (Lux et al., 2021)3, (Kuchaiev et al., 2019)4,(Ravanelli et al., 2021)5

Appendix C. Overview of Requirements & Implementation Survey

This section explores some of the core requirements of a TTS toolkit re-
quired for inclusion in our ‘repeatable recipe’ for limited-data TTS. We have
structured the requirements into three distinct sections: modelling require-
ments (C.1), data preprocessing requirements (C.2), and developer experi-
ence requirements (C.3). For each set of requirements, we will compare and
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assess the way that each of the aforementioned toolkits addresses these chal-
lenges. All of the findings are summarized for ease of reference in Table C.12
on page 69.

C.1. Modelling Requirements
One of the main requirements of a TTS model architecture for our context

is data efficiency. However, other considerations are similarly important such
as preventing misuse, and the ability to practically fine-tune and evaluate the
system.

C.1.1. Data Efficiency
Perhaps the most obvious technical requirement of a toolkit for use in a

limited data context is whether the model is efficient with respect to how
much data it requires, as discussed at length in §4.2. If a toolkit requires
many hours of audio to produce intelligible speech it will not be able to be
used for low-resource TTS.

Toolkit Implementations. While a rigorous comparison of the results
of listening tests for each model is outside the scope of this paper, we can
infer some basic information about data efficiency based on the models that
each toolkit implements. For example, it has been shown that the non-
autoregressive FastSpeech2/Fastpitch systems are many times more efficient
than Tacotron2 (Pine, Wells, et al., 2022). Every toolkit discussed contains
an implementation of a FastSpeech2/Fastpitch based system, meaning that
data-efficient TTS is possible in any of the toolkits mentioned.

Toolkits differ widely, however, in terms of the documentation and sign-
posting provided to users about which model to use in a low-resource context.
fairseq S2, SpeechBrain, and ESPnet do not provide any suggestions about
which model to use for low-resource settings. NeMo’s excellent ‘primer on
TTS’ (Harper et al., 2023b) includes descriptions of the differences between
autoregressive (AR) Tacotron2 and non-AR Fastpitch systems, but does not
mention anything related to data efficiency. Similarly, Coqui TTS’s FAQ
section (Coqui GmbH, 2021) has an answer to the question ‘How should I
choose the right model?’ but it suggests (data inefficient) Tacotron as the
first model to try and low-resource considerations are not mentioned.

IMS Toucan is different from the other toolkits in that it explicitly refer-
ences low-resource TTS as its target use case. It uses an adapted FastSpeech2
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model and provides a pre-trained vocoder with instructions for fine-tuning
to a new low-resource language.

The EveryVoice TTS toolkit approach to data efficiency is similar to IMS
Toucan in that we only include a single model which is specifically curated for
a low-resource context. Like IMS Toucan we implement a two-stage system
comprised of a feature prediction network based on FastSpeech2 (Ren et al.,
2021). The EveryVoice TTS vocoder is based on iSTFT-Net (Kaneko et
al., 2022). While so-called end-to-end systems like VITS (Kim et al., 2021)
are capable of producing impressively natural speech, two-stage systems are
currently more data efficient in low-resource applications since the vocoder
is trained without text, lessening the burden of requiring transcribed data.

The feature prediction network we implemented is based on the adapted
FastSpeech2 model from (Pine, Wells, et al., 2022), which was demonstrated
to be particularly well-suited to low-resource TTS; in listening test evalua-
tions, the adapted FastSpeech2 model trained on only 1 hour of data was
shown to have results that were not significantly different from a Tacotron2
baseline trained on 10 hours of data.

Coqui
TTS

ESPnet Every
Voice

Fairseq IMS-
Toucan

NeMo Speech
Brain

✓* ✓* ✓ ✓* ✓ ✓* ✓*

Table C.3: List of toolkits that contain a recommended data-efficient strategy for low-
resource TTS. * indicates that data efficient models are implemented in the toolkit, but
there is no documentation present that recommends a particular model for use in low-
resource contexts.

C.1.2. Preventing Misuse
As discussed in Appendix A, misuse could result from the unauthorized

use of speech data (i.e. data theft), or production of offensive language that
would bring harm to the speaker or to people deceived by the synthesized
audio.

There are a variety of strategies for mitigating these issues, from educating
practitioners about the importance of data rights and intellectual property,
to more technical solutions such as applying a ‘watermark’ to synthesized
audio (G. Chen et al., 2023) that allows synthesized audio to be identified
with a signature.
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Toolkit Implementations. None of the strategies available are adequate
in preventing all forms of misuse. As of the time of writing, we were unable
to find any documentation of strategies to prevent misuse in ESPnet, IMS
Toucan, fairseq S2, NeMo, or SpeechBrain. fairseq S2 has released pre-
trained checkpoints for TTS systems trained on low-resource language data
without the permission of the language communities or speakers in question
(see §2.3) which has the potential to enable misuse, not prevent it. Coqui
TTS has a public discussion (Coqui, 2021b) about the topic, which has gar-
nered quite a bit of interest and promising ideas, but to our knowledge, none
of the ideas or strategies have yet been implemented in Coqui TTS. However,
Coqui TTS also promotes the use of the problematic ‘Massively Multilingual
Speech’ TTS models to be used with Coqui TTS.

Closed-source speech synthesis systems such as Microsoft’s Neural TTS
have adopted some stricter regulations for their TTS software, such as lim-
iting access, enforcing a Code of Conduct (Farley & Microsoft, 2023), and
using watermarking technology, but closed-source systems are beyond the
scope of this paper.

The EveryVoice TTS toolkit addresses potential misuse by requiring a
declaration of data permissions before training any model with EveryVoice
TTS; that is, users must declare that they have permission to use their data
and also include some personal information such as name and contact email
address. These answers, along with all other hyperparameters, are stored by
default in the model checkpoints produced during training and are required in
order to run the model. In this way, we intend to invite users to consider their
relationship to the data in question and to confirm that they have appropriate
permission. The documentation links the user to resources explaining why
this is important, and the command line interface for creating new datasets
prompts the user with this information as well.

Unfortunately, none of these methods are adequate in eliminating the
possibility of misuse. For example, a user could fill out the data permission
questions incorrectly. However, we hope that this measure will indicate to
users that they are potentially doing something harmful and prevent cases
of inadvertent harm while also providing hurdles for bad actors who might
try to misuse EveryVoice TTS.

We encourage future research to investigate methods such as incorpo-
rating low-intervention watermark systems that would identify synthesized
audio and be embedded in all released pre-trained checkpoints released by
publicly available toolkits.
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C.1.3. Practical Finetuning
The ability of a different organization to fine-tune a pre-trained model

has practical consequences for the feasibility and accessibility of training a
TTS model for a new language. With the current status quo, training of
multilingual neural TTS systems is, in practice, limited to larger organiza-
tions with access to GPU clusters and large multilingual speech corpora.
Beyond hardware limitations, there are modelling constraints that limit the
ability to perform cross-lingual fine-tuning such as unifying the input space
as discussed at length in §4.3.

Toolkit Implementations. Feature-prediction and end-to-end TTS mod-
els for Coqui TTS, ESPnet, and SpeechBrain all one-hot encode inputs using
either characters or phonemes, which means that the input space varies be-
tween languages and causes complexity for fine-tuning (§4.3).

fairseq S2, and NeMo both implement feature prediction networks trained
with self-supervised learning representations (SSL) of audio as input (Polyak
et al., 2021) instead of text, allowing these models to be fine-tuned without
mapping the input space of the target language to the donor language model.

Alternatively, IMS Toucan and EveryVoice TTS both implement feature
prediction networks trained with phonological feature vector inputs (Lux
& Vu, 2022; Staib et al., 2020b). The implementations differ in that IMS
Toucan implements a custom mapping from IPA characters to phonological
features, and EveryVoice TTS uses the libraries Gi2Pi (Pine, Littell, et al.,
2022) and Panphon (Mortensen et al., 2016).

Coqui
TTS

ESPnet Every
Voice

fairseq
S2

IMS-
Toucan

NeMo Speech
Brain

Phonological
Features

✗ ✗ ✓ ✗ ✓ ✗ ✗

SSL Features ✗ ✗ ✗ ✓ ✗ ✓ ✗

Public
Checkpoints

✓ ✓ ✓ ✓ ✓ ✓ ✓

Table C.4: List of toolkits that contain features to support fine-tuning. ‘Phonological
Features’ specifies whether the toolkit allows inputs to be encoded as multi-hot phono-
logical feature vectors instead of one-hot character or phoneme vectors. ‘SSL Features’
specifies whether the toolkit supports using self-supervised units as inputs to their feature
prediction networks.
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C.1.4. Evaluation
As discussed at length in §4.4, evaluation represents a significant challenge

for many low-resource speech synthesis projects, including ours. Listening
tests involve time and expertise that are both in short supply, which means
that there are practical limitations on the number of models we are capable
of evaluating. The inclusion of one or more language-independent methods
for performing evaluation is therefore seen as a useful and important feature
in our context, where automatic methods could help triage models and decide
which ones should be evaluated with listening tests, even if automatic metrics
are not reliable replacements for human evaluation.

Toolkit Implementations. At the time of writing, Coqui TTS, IMS Tou-
can, EveryVoice TTS, and SpeechBrain do not provide any methods for eval-
uating synthesized speech.

NeMo provides a notebook (Harper et al., 2023a) describing how to cal-
culate Mel Cepstral Distortion (MCD) with dynamic time warping. fairseq
S2 provides automatic evaluation by implementing calculations of MCD as
well as Mel Spectral Distortion, character and word error rates (CER/WER)
calculated by pre-trained ASR systems, and a variety of F0 error calcula-
tions including gross pitch error (GPE) and F0 frame error (FFE) (Chu &
Alwan, 2009). It should be noted that while the MCD and FFE metrics
are language-independent, calculating word and character error rates using
an ASR model requires also having a pre-trained ASR system in the target
language which is unlikely in many low-resource contexts.

ESPnet provides five strategies for evaluating synthesized speech; MCD,
root mean-squared error (RMSE) of log-F0 estimations, CER/WER, and
conditional Fréchet DeepSpeech Distance (cFDSD) (Binkowski et al., 2020).
They also measure speaker similarity by implementing an automatic calcula-
tion of the mean speaker embedding cosine similarity between the reference
and synthesized audio using a speaker verification model (Hsieh et al., 2023).

Coqui
TTS

ESPnet Every
Voice

fairseq
S2

IMS-
Toucan

NeMo Speech
Brain

✗ ✓ ✗ ✓ ✗ ✓ ✗

Table C.5: List of toolkits that contain a strategy for performing automatic evaluation.
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C.2. Data Preparation & Preprocessing Requirements
Data preparation and preprocessing are umbrella terms to describe the

various steps that are needed to gather and transform data into the necessary
formats required for training. Many TTS research datasets have often already
been preprocessed such that all audio files have a consistent sampling rate
and bit depth, some text normalization has been applied, and the dataset is
almost always aligned at the utterance level.

In order for us to build a repeatable recipe for other limited-data TTS
projects to follow, we need to ensure that the toolkit we use incorporates
adequate preprocessing functionality to support data that is potentially less
consistent than typical TTS research datasets. Specifically, we require a
pipeline for handling audio data that is able to remove noise, detect and
remove unnecessary silence, perform utterance-level segmentation of long-
form audio, and detect outliers.

C.2.1. Noise Removal
As described in §3.3, making high-quality recordings is a significant lo-

gistical challenge. In some cases, recordings have been produced without the
ideal equipment or recording conditions for TTS. In these cases, removing
noise is an important step in preparing data for training (Xu et al., 2023).

Toolkit Implementations. As of writing, we could not find any method
for performing denoising within Coqui TTS, IMS Toucan, or NeMo. In a
GitHub Discussion (Coqui, 2021a) it appears that Coqui TTS recommends
the use of 3rd party software RNNoise (Valin, 2018). IMS Toucan and NeMo
do not appear to suggest a noise removal strategy.

SpeechBrain and ESPnet (Y.-J. Lu et al., 2022) both provide speech
enhancement pipelines for separating a speech signal from ambient noise and
reverberation. These pipelines are not connected with TTS recipes.

fairseq S2 provides a dedicated denoising strategy following Défossez
et al. (2020) built into their TTS pipeline.

EveryVoice TTS does not yet provide any solution for denoising. Like
Coqui TTS, we currently recommend using RNNoise (Valin, 2018) while an
integrated solution is being investigated.

C.2.2. Silence Removal
Silence can vary widely within a TTS dataset and this variability can

adversely affect TTS models, particularly when jointly modelling text/audio
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Coqui
TTS

ESPnet Every
Voice

fairseq
S2

IMS-
Toucan

NeMo Speech
Brain

✗ ✓* ✗ ✓ ✗ ✗ ✓*

Table C.6: List of toolkits that contain a strategy for removing noise from speech utter-
ances. * indicates that the method is available but not documented in connection with
the TTS pipeline.

alignment. A useful step for data preparation is to trim leading and trailing
silences around speech regions to a consistent, relatively short duration. This
may be applied directly to audio files before training, or during acoustic
feature extraction, in which case any derived Mel spectrogram features might
not match original audio durations exactly. This process may also be referred
to as voice activity detection (VAD).

Toolkit Implementations. ESPnet includes a utility script to trim sur-
rounding silence as detected by a simple power threshold relative to the
maximum signal amplitude in each utterance. Additional artificial silence
can be added to pad the beginning and end of each utterance to retain a
minimum amount of silence (by default 0.01 s). This utility is included as
part of many of the recipes in provided in ESPnet for preparing various TTS
corpora. Coqui TTS includes a similar utility; both toolkits trim silence while
loading original audio files, before extracting acoustic features. fairseq S2

uses the open-source WebRTC VAD (Wiseman, 2021), which uses a GMM
to model voice probabilities per frame based on energy levels in multiple fre-
quency bands. Leading and trailing silences are removed completely, while
utterance-internal silences longer than 300 ms are replaced by 300 ms of arti-
ficial silence. EveryVoice TTS allows users to apply the SoX silence effect
to with defaults for stripping leading, trailing, and utterance-internal silence
based on an energy threshold.

NeMo also provides a simple energy threshold-based VAD solution, along-
side a pre-trained CNN VAD model (Jia et al., 2021). The option to trim
silences during dataset preparation is mentioned briefly in the documentation
for NeMo’s TTS configuration files, but only for setting the simple energy
threshold. IMS Toucan has the option to run a pre-trained Silero neural VAD
model during dataset preparation (Veysov & Voronin, 2022). SpeechBrain
also provides a general-purpose interface to a pre-trained CRDNN model,
but it does not seem to be applied in any provided TTS training recipes. In-
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stead, data preparation in the provided FastSpeech2 recipe trims surrounding
silences based on forced alignments.

Coqui
TTS

ESPnet Every
Voice

fairseq
S2

IMS-
Toucan

NeMo Speech
Brain

✓ ✓ ✓ ✓ ✓* ✓ ✓*

Table C.7: List of toolkits that contain a strategy for trimming surrounding silence from
speech utterances. * indicates that the method is available but not documented in con-
nection with the TTS pipeline.

C.2.3. Audio Segmentation
As previously mentioned (§3.3.2), we recommend the use of tools like

Mozilla’s Common Voice or Speech Recorder (Draxler & Jänsch, 2004) for
recording new audio, since the software prompts users for single utterances
thus resulting in utterance-aligned data. However, it is often the case that
parallel text and audio data already exist for a language but in a longer-form
format. Being able to align long-form audio into shorter segments is thus one
important step in our repeatable recipe.

Toolkit Implementations. As of writing, Coqui TTS, and IMS Toucan
do not provide any built-in support for performing long-form audio segmen-
tation.

Implementations vary in terms of which pre-trained models are provided
by default, but ESPnet, and SpeechBrain both provide recipes for CTC Seg-
mentation (Kürzinger et al., 2020) which is a powerful method for long-form
audio utterance segmentation. However, as of writing, the recipes are not
directly linked to speech synthesis recipes, leaving it to the expertise of the
user to be aware that this is a method that could be used for segmenting
their data. Similarly, fairseq S2’s parent module fairseq provides steps
for performing CTC Segmentation, but it does not appear to be linked in
the general TTS recipe.

NeMo’s ‘Dataset Creation Tool’ also provides support for CTC Segmen-
tation which defines a more documented pathway for the user to apply the
CTC Segmentation method when creating and preprocessing their dataset.

The EveryVoice TTS Toolkit also provides support for segmenting data
using the CTC Segmentation method. The method is built into the main
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command line interface with documentation in the help message of the com-
mand line and in the user documentation as to why CTC Segmentation might
be needed.

Coqui
TTS

ESPnet Every
Voice

fairseq
S2

IMS-
Toucan

NeMo Speech
Brain

✗ ✓* ✓ ✓* ✗ ✓ ✓*

Table C.8: List of toolkits that contain a strategy for performing long-form audio segmen-
tation into text/audio aligned utterances. * indicates that the method is available but not
documented in connection with the TTS pipeline.

C.2.4. Outlier Detection & Dataset Selection
When building speech synthesis systems, more data is not always better,

particularly when the data in question was not purposefully recorded for
TTS under controlled conditions (Gallegos et al., 2020; Tesfaye Biru et al.,
2019). Choosing a subset of the data to use can be achieved by detecting
and removing or filtering outliers when preparing data.

Toolkit Implementations. As of the time of writing, SpeechBrain, ESP-
net, and NeMo do not appear to have any module specifically dedicated to
detecting and removing outliers.

Coqui TTS has a collection of notebooks (Coqui, 2023b) intended to
perform ‘dataset analysis’ for the purpose of finding outliers and determining
phoneme coverage. The notebooks appear to perform basic sanity checks (i.e.
missing files or duplicate data) and create plots for other information, but
Coqui TTS does not appear to have a documented method for incorporating
these notebooks (or the results of running them) into a TTS recipe.

IMS Toucan provides a ‘scorer’ which passes potentially inconsistent data
through a pre-trained model. The script then displays the top 20 samples
with the highest loss (as calculated by the pre-trained model) and removes
the top 5 samples. fairseq S2 also implements a form of outlier filtering
using two separate methods; one based on signal-to-noise ratio (SNR) and
the other based on Character Error Rate from a pre-trained ASR system (C.
Wang et al., 2021). While the former could be applied in a zero-shot manner,
the latter would require a pretrained ASR model, ideally trained in the same
language as the data in question.
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EveryVoice TTS provides a module for detecting and removing outliers by
detecting clipping in sample audio as well as statistical outliers with respect
to duration, F0 estimation, and energy and speaking rate (calculated as both
words/second and characters/second). We have found that extreme outliers
with respect to speaking rate are often due to inaccurate alignments.

Coqui
TTS

ESPnet Every
Voice

fairseq
S2

IMS
Toucan

NeMo Speech
Brain

✓ ✗ ✓ ✓ ✓ ✗ ✗

Table C.9: List of toolkits that contain a strategy for performing outlier filtering on
potentially noisy datasets.

C.3. Developer Experience Requirements
One of our goals is to reduce the friction involved in building and train-

ing speech synthesis models. We are building our repeatable recipe for the
technical user, that is, a user who is familiar with the command line, but not
necessarily a TTS expert, or even a machine-learning expert. We separate
these considerations into two broad categories; toolkit support for configuring
projects and models (C.3.1), and the general availability of documentation
and developer support (C.3.2).

C.3.1. Assisted Project and Model Configuration
One of the challenges of developing neural speech synthesis systems is

related to the number of combinatorial possibilities among hyperparameters.
Typically, these hyperparameters are configurable in files that are separate
to the model code, but TTS toolkits vary in terms of how much assistance is
provided to users in creating or editing these files. For our repeatable recipe,
we require a toolkit that assists the user in creating configurations for new
projects with new languages or datasets.

These configurations should ideally include validation, to help catch errors
and misconfigurations prior to model runtime, so that potential issues can
be resolved before training. Configurations should also be hierarchical and
composable, allowing certain aspects of model configuration to be shared
across different configuration files. Additionally, in many cases it is common
to build models from multiple datasets and it can be tedious and error-prone
to ask users to manually combine multiple datasets together into a single
location, ensure the audio is in the same format, and combine the filelists
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themselves. A toolkit for our repeatable recipe would ideally be able to
accommodate multiple data sources within a single configuration file.

Toolkit Implementations. IMS Toucan does not implement hyperpa-
rameter configuration using modular YAML or JSON files. Rather, every-
thing is specified in Python files directly. The toolkit is set up to support spe-
cific ‘pipelines’ for training specific models which represent particular com-
binations of hyperparameters defined together with a model and training
routine. This approach is different from the other toolkits surveyed which
prioritize separation of hyperparameters and models to allow for easier cus-
tomization.

SpeechBrain maintains a Python package (SpeechBain, 2023) that sup-
ports custom extensions to the data serialization language YAML. Most im-
portantly, the authors extend the use of YAML tags to simplify the creation
of new modules, classes, or functions, for example, model: !new:collec ⌋

tions.Counter would create a new instance of the Counter class from the
collection module in Python as a value to the model key in a standard YAML
key/value mapping. Hyperparameters loaded from their extended YAML are
used to instantiate models without validation, however, leaving it up to the
user to determine the cause of potential errors at runtime.

Similar to SpeechBrain, Coqui TTS maintains its own separate Python
package for managing hyperparameters (Coqui, 2022). The package, called
‘coqpit’, is a simple but clever implementation for providing meaningful er-
ror messages to missing values in a configuration file and allows for defining
nested, conditional configurations capable of being overridden easily from
command line arguments. Unlike the majority of other toolkits, ‘coqpit’
uses JSON instead of YAML to serialize hyperparameters. A configura-
tion can also be validated by using the provided check_values method and
check_argument function.

NeMo & fairseq S2 use Hydra, which is a popular configuration library
that combines useful configuration features (such as hierarchical, composable
configuration) together with a command-line interface that allows configu-
ration arguments to be overridden in the command line and multiple jobs
to be instantiated with a single command. It appears that some modules in
ESPnet2 are moving to Hydra, but currently TTS is implemented by loading
pure YAML as it is in the original ESPnet. The YAML configurations typi-
cally have in-line comments that describe help messages and instructions for
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the range and type of possible values, leaving it up to the user to validate
their hyperparameter specifications.

Instead of Hydra, EveryVoice TTS uses Pydantic, a widely used data
validation library for Python, as well as Typer, which is a separate popular
command line interface framework for Python. Beyond basic type-checking,
this system allows for many other forms of validation such as checking file
or folder paths, or even more complex validations, for example, ensuring
that if the vocoder is configured to take 22.05 kHz inputs and produce 44.1
kHz outputs, then the number of upsampling layers (and the kernel sizes of
those layers) is configured correctly for 2:1 super-resolution; if not, an early
error message is shown describing the problem. Because model configura-
tions are statically-typed, code-completion is also available in code editors
that support it, and JSON schemas for each configuration are automatically
generated and uploaded to SchemaStore (SchemaStore, 2023), meaning that
many popular code editors like VS Code will automatically include syntax
highlighting and tab completion when a user is editing a serialized EveryVoice
TTS JSON or YAML configuration as seen in Figure C.5.

Figure C.5: Screenshot of syntax highlighting in an EveryVoice TTS YAML file showing
that when a user passes a string instead of an integer for the ‘batch_size’ configuration
parameter, they are warned in the editor with highlighting. EveryVoice TTS YAML files
also include tab completion.

Additionally, EveryVoice TTS allows the user to define multiple sources
of data for a single experiment in one configuration file. Each source of data
can still be configured independently (e.g. with respect to how much silence
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is removed, or how to parse the filelist). The EveryVoice TTS configuration
wizard (C.3.2) also supports the user in writing configurations with multiple
data sources. Table C.10 summarizes the results across the surveyed toolkits.

Coqui
TTS

ESPnet Every
Voice

fairseq
S2

IMS-
Toucan

NeMo Speech
Brain

Library Coqpit YAML Pydantic Hydra None Hydra Hyper-
PyYaml

Validation ✓ ✗ ✓ ✗ ✗ ✗ ✗

Hierarchical &
Composable

✓ ✓ ✓ ✓ ✗ ✓ ✓

Config Syntax
Highlighter

✗ ✗ ✓ ✗ N/A ✗ ✗

Multiple Data
Sources

✗ ✗ ✓ ✗ ✗ ✗ ✗

Table C.10: Table describing various strategies used by toolkits to assist users in defining
configurations for their models. The ‘Library’ field specifies which library is used (if any)
to assist with configuration. ‘Hierarchical & Composable’ specifies whether configurations
can be shared and nested. ‘Config Syntax highlighter’ specifies whether the serialized
format of the configuration (JSON or YAML) highlights errors or provides type hints.
‘Multiple Data Sources’ specifies whether the configuration can handle multiple sources of
data or whether datasets have to first be combined by the user.

C.3.2. Documentation, Guides, & Support
For many applied low-resource TTS projects, in addition to a limited

amount of data, there is limited access to speech synthesis expertise and
support. Undocumented settings or commands seldom pose issues for teams
with direct access to toolkit developers or other experts. For many users of
technical toolkits, issues are solved in internal memos, emails, or messaging
platforms that are exclusively available to a particular workplace or research
team. For applied low-resource TTS projects, an ideal toolkit would have
public documentation, guides, and support systems.

Toolkit Implementations. ESPnet benefits from a large community (7.3k
stars on GitHub and over 200 contributors), publicly available documentation
including Kaldi-style ‘recipes’ that are effectively collections of bash scripts
to perform a particular task. There are also recordings of in-person tutorials,
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lectures, and community-authored instructional videos on toolkit usage for
TTS.

Coqui TTS arguably has the largest community of users with 21.1k stars
on GitHub, over 130 contributors, an active GitHub Discussions page, and
over 2 900 members on its Discord channel. However, the member count here
is shared between users of its open-source toolkit implementation as well as
its business product offerings. The documentation contains a combination of
guides, recipes, and notebooks.

Similar to ESPnet and Coqui TTS, NeMo has a large community of users
with 8.3k stars and 270 contributors. It also has some excellent guides and
Jupyter notebooks for introducing users to speech synthesis and the NeMo-
toolkit as well as a GitHub Discussion page.

fairseq S2 has a large community of users and contributors. They have
a documentation page, but the documentation page does not include any
information about speech synthesis. Instead, they have some examples in
the form of markdown files within the code base that demonstrate how to
prepare data from LJ Speech, VCTK, and Common Voice and commands
for running training, inference, and evaluation. They do not have a Discord
channel but they do have a Google Group.

IMS Toucan has a relatively smaller community of users than some of the
other toolkits discussed here, likely in part because of its focused approach in
providing a TTS architecture for low-resource applications. The contributors
are active and supportive to the community of users and discussions appear
to take place in the GitHub Issues page. There is information in the GitHub
repository page readme about how to adapt the training pipeline to a new
language, but there is no dedicated documentation page.

SpeechBrain has a large community of users (6.7k stars and over 130
contributors), a dedicated Discord channel with 200+ members, and a vari-
ety of forms of documentation including blog-style tutorials, notebooks, and
YouTube videos (as of writing there do not appear to be videos for TTS).

As previously mentioned, we are releasing EveryVoice TTS at a functional
but early stage of development to help encourage the growth of a community
of users; however, that community does not yet exist. EveryVoice TTS has
documentation, guides and a GitHub Discussion page, but does not have
any associated notebooks, video content, or a Discord channel like other
toolkits discussed here. Our team is excited to welcome users, but there is no
replacement for user communities like the ones found in Coqui TTS, ESPnet,
or SpeechBrain, and they take time to grow. Prospective users of EveryVoice

66



TTS or other toolkits with limited contributors and communities should take
this consideration into account as a possible limitation of the toolkit.

To help guide users, EveryVoice TTS has implemented a textual user
interface (TUI) to interactively guide users through the steps of configuring
a TTS project with new datasets in a new language.

It is worth mentioning that all of the toolkits evaluated here, including
EveryVoice TTS, only provide documentation in English, which introduces
a language barrier for prospective users who do not speak English. While
this is true for the vast majority of speech processing toolkits, there are
exceptions such as PaddleSpeech (H. Zhang et al., 2022), which provides a
bilingual English & Mandarin Chinese ‘readme’ and responds to issues and
discussion topics in both languages.

Coqui
TTS

ESPnet Every
Voice

fairseq
S2

IMS-
Toucan

NeMo Speech
Brain

GitHub Stars 21.3k 7.3k N/A 27.9k 390 8.4k 6.8k
Open Issues 18 185 N/A 1019 28 41 95
Closed Issues 752 2031 N/A 3025 105 1782 861
Contributors 139 231 5 308 3 270 135
Discussions Page ✓ ✓ ✓ ✗ ✗ ✓ ✓

Discord Members 2901 ✗ ✗ ✗† ✗ ✗ 260
Textual User
Interface

✗ ✗ ✓ ✗ ✗ ✗ ✗

Jupyter Notebooks ✓ ✓ ✗ ✗ ✗ ✓ ✓

Documentation
Page

✓ ✓ ✓ ✗ ✗ ✓ ✓

Associated Paper ✗ ✓1 ✓ ✓2 ✓3 ✓4 ✓*5

Table C.11: Summary of information related to documentation, guides, and support for
existing toolkits. GitHub statistics are not available yet for EveryVoice TTS as of writing.
Only foundational paper citations are included, there are many citations associated with
some of these toolkits. * indicates the associated paper only appears as a preprint. †
fairseq S2 has a Google Group with a community of users. 1(Watanabe et al., 2018),
2(C. Wang et al., 2021), 3(Lux et al., 2021), 4(Kuchaiev et al., 2019), 5(Ravanelli et al.,
2021)
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Coqui
TTS

ESPnet Every
Voice

Fairseq IMS-
Toucan

NeMo Speech
Brain

Section

Associated Paper ✗ ✓1 ✓ ✓2 ✓3 ✓4 ✓5 §A

Data Efficiency ✓† ✓† ✓ ✓† ✓ ✓† ✓† §C.1.1

Misuse Prevention ✗ ✗ ✓ ✗ ✗ ✗ ✗ §C.1.2

Phonological
Features

✗ ✗ ✓ ✗ ✓ ✗ ✗ §C.1.3

SSL Features ✗ ✗ ✗ ✓ ✗ ✓ ✗ §C.1.3

Public Checkpoints ✓ ✓ ✓ ✓ ✓ ✓ ✓ §C.1.3

Evaluation ✗ ✓ ✗ ✓ ✗ ✓ ✗ §C.1.4

Noise Removal ✗ ✓* ✗ ✓ ✗ ✗ ✓* §C.2.1

Silence Trimming ✓ ✓ ✓ ✓ ✓* ✓ ✓* §C.2.2

Segmentation ✗ ✓* ✓ ✓* ✗ ✓ ✓* §C.2.3

Outlier Filtering ✓ ✗ ✓ ✓ ✓ ✗ ✗ §C.2.4

Config Library Coqpit YAML Pydantic Hydra None Hydra HyperPy-
Yaml

§C.3.1

Config Validation ✓ ✗ ✓ ✗ ✗ ✗ ✗ §C.3.1

Composable Configs ✓ ✓ ✓ ✓ ✗ ✓ ✓ §C.3.1

Config Syntax
Highlighter

✗ ✗ ✓ ✗ N/A ✗ ✗ §C.3.1
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Multiple Data
Sources

✗ ✗ ✓ ✗ ✗ ✗ ✗ §C.3.1

GitHub Stars 21.3k 7.3k N/A 27.9k 390 8.4k 6.8k §C.3.2

Open Issues 18 185 N/A 1019 28 41 95 §C.3.2

Closed Issues 752 2031 N/A 3025 105 1782 861 §C.3.2

Contributors 139 231 5 308 3 270 135 §C.3.2

Discussions Page ✓ ✓ ✓ ✗ ✗ ✓ ✓ §C.3.2

Discord Members 2901 ✗ ✗ ✗‡ ✗ ✗ 260 §C.3.2

Textual User
Interface

✗ ✗ ✓ ✗ ✗ ✗ ✗ §C.3.2

Jupyter Notebooks ✓ ✓ ✗ ✗ ✗ ✓ ✓ §C.3.2

Documentation Page ✓ ✓ ✓ ✗ ✗ ✓ ✓ §C.3.2

Table C.12: A summary table of the results of the survey provided in sections §5, Appendix C, and Ap-
pendix B. For additional information please visit the associated sections, referenced in the last column. *
indicates that the feature is available, but not documented in connection with a TTS pipeline or recipe. †
indicates that data efficient models are implemented in the toolkit, but there is no documentation present
that recommends a particular model for use in low-resource contexts. ‡ fairseq S2 does not have a Discord
channel, but they have a Google Group where discussions take place. 1(Watanabe et al., 2018), 2(C. Wang
et al., 2021), 3(Lux et al., 2021), 4(Kuchaiev et al., 2019), 5(Ravanelli et al., 2021)
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